MATH 2050A: Mathematical Analysis I (2017 1st term)

Chi-Wai Leung

1 Compact Sets in \mathbb{R}

Throughout this section, let (x_n) be a sequence in \mathbb{R} . Recall that a subsequence $(x_{n_k})_{k=1}^{\infty}$ of (x_n) means that $(n_k)_{k=1}^{\infty}$ is a sequence of positive integers satisfying $n_1 < n_2 < \cdots < n_k < n_{k+1} < \cdots$, that is, such sequence (n_k) can be viewed as a strictly increasing function $\mathbf{n} : k \in \{1, 2, ..\} \mapsto n_k \in \{1, 2, ..\}$.

In this case, note that for each positive integer N, there is $K \in \mathbb{N}$ such that $n_K \ge N$ and thus we have $n_k \ge N$ for all $k \ge K$.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let $(I_n := [a_n, b_n])$ be a sequence of closed and bounded intervals. Suppose that it satisfies the following conditions.

 $(i) : I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots.$

(*ii*) : $\lim_{n \to \infty} (b_n - a_n) = 0.$

Then there is a unique real number ξ such that $\bigcap_{n=1}^{\infty} I_n = \{\xi\}$.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3].

Theorem 1.2 (Bolzano-Weierstrass Theorem) Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof: See [1, Theorem 3.4.8].

Definition 1.3 A subset A of \mathbb{R} is said to be *compact* (more precise, *sequentially compact*) if every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of \mathbb{R} . The following is an important notation in mathematics.

Definition 1.4 A subset A is said to be *closed* in \mathbb{R} if it satisfies the condition:

if (x_n) is a sequence in A and $\lim x_n$ exists, then $\lim x_n \in A$.

Example 1.5 (i) $\{a\}; [a, b]; [0, 1] \cup \{2\}; \mathbb{N};$ the empty set \emptyset and \mathbb{R} all are closed subsets of \mathbb{R} .

(ii) (a, b) and \mathbb{Q} are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of \mathbb{R} . The following statements are equivalent.

- (i) A is closed.
- (ii) For each element $x \in \mathbb{R} \setminus A$, there is $\delta_x > 0$ such that $(x \delta_x, x + \delta_x) \cap A = \emptyset$.

The following is an important characterization of a compact set in \mathbb{R} . Warning: this result is not true for the so-called *metric spaces* in general.

Theorem 1.7 Let A be a closed subset of \mathbb{R} . Then the following statements are equivalent.

- (i) A is compact.
- (ii) A is closed and bounded.

Proof: It is clear that the result follows if $A = \emptyset$. So, we assume that A is non-empty. For showing $(i) \Rightarrow (ii)$, assume that A is compact.

We first claim that A is closed. Let (x_n) be a sequence in A. Then by the compactness of A, there is a convergent subsequence (x_{n_k}) of (x_n) with $\lim_k x_{n_k} \in A$. So, if (x_n) is convergent, then $\lim_n x_n = \lim_k x_{n_k} \in A$. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an element $x_1 \in A$. Since A is not bounded, we can find an element $x_2 \in A$ such that $|x_2 - x_1| > 1$. Similarly, there is an element $x_3 \in A$ such that $|x_3 - x_k| > 1$ for k = 1, 2. To repeat the same step, we can obtain a sequence (x_n) in A such that $|x_n - x_m| > 1$ for $m \neq n$. From this, we see that the sequence (x_n) does not have a convergent subsequence. In fact, if (x_n) has a convergent subsequence (x_{n_k}) . Put $L := \lim_k x_{n_k}$. Then we can find a pair of sufficient large positive integers p and q with $p \neq q$ such that $|x_{n_p} - L| < 1/2$ and $|x_{n_q} - L| < 1/2$. This implies that $|x_{n_p} - x_{n_q}| < 1$. It leads to a contradiction because $|x_{n_p} - x_{n_q}| > 1$ by the choice of the sequence (x_n) . Thus, A is bounded.

It remains to show $(ii) \Rightarrow (i)$. Suppose that A is closed and bounded.

Let (x_n) be a sequence in A. Thus, (x_n) . Then the Bolzano-Weierstrass Theorem assures that there is a convergent subsequence (x_{n_k}) . Then by the closeness of A, $\lim_k x_{n_k} \in A$. Thus A is compact.

The proof is finished. \Box

2 Appendix: Compact sets in \mathbb{R} , Part 2

For convenience, we call a collection of open intervals $\{J_{\alpha} : \alpha \in \Lambda\}$ an open intervals cover of a given subset A of \mathbb{R} , where Λ is an arbitrary non-empty index set, if each J_{α} is an open interval (not necessary bounded) and

$$A \subseteq \bigcup_{\alpha \in \Lambda} J_{\alpha}.$$

Theorem 2.1 Heine-Borel Theorem: For any closed and bounded interval [a, b] satisfies the following condition:

(HB) Given any open intervals cover $\{J_{\alpha}\}_{\alpha \in \Lambda}$ of [a, b], we can find finitely many $J_{\alpha_1}, .., J_{\alpha_N}$ such that $[a, b] \subseteq J_{\alpha_1} \cup \cdots \cup J_{\alpha_N}$

Proof: Suppose that [a, b] does not satisfy the above Condition (HB). Then there is an open intervals cover $\{J_{\alpha}\}_{\alpha \in \Lambda}$ of [a, b] but it it has no finite sub-cover. Let $I_1 := [a_1, b_1] = [a, b]$ and m_1 the mid-point of $[a_1, b_1]$. Then by the assumption, $[a_1, m_1]$ or $[m_1, b_1]$ cannot be covered by finitely many J_{α} 's. We may assume that $[a_1, m_1]$ cannot be covered by finitely many J_{α} 's. Put $I_2 := [a_2, b_2] = [a_1, m_1]$. To repeat the same steps, we can obtain a sequence of closed and bounded intervals $I_n = [a_n, b_n]$ with the following properties:

- (a) $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots ;$
- (b) $\lim_{n \to \infty} (b_n a_n) = 0;$
- (c) each I_n cannot be covered by finitely many J_{α} 's.

Then by the Nested Intervals Theorem, there is an element $\xi \in \bigcap_n I_n$ such that $\lim_n a_n = \lim_n b_n = \xi$. In particular, we have $a = a_1 \leq \xi \leq b_1 = b$. So, there is $\alpha_0 \in \Lambda$ such that $\xi \in J_{\alpha_0}$. Since J_{α_0} is open, there is $\varepsilon > 0$ such that $(\xi - \varepsilon, \xi + \varepsilon) \subseteq J_{\alpha_0}$. On the other hand, there is $N \in \mathbb{N}$ such that a_N and b_N in $(\xi - \varepsilon, \xi + \varepsilon)$ because $\lim_n a_n = \lim_n b_n = \xi$. Thus we have $I_N = [a_N, b_N] \subseteq (\xi - \varepsilon, \xi + \varepsilon) \subseteq J_{\alpha_0}$. It contradicts to the Property (c) above. The proof is finished. \Box

Remark 2.2 The assumption of the closeness and boundedness of an interval in Heine-Borel Theorem is essential.

For example, notice that $\{J_n := (1/n, 1) : n = 1, 2...\}$ is an open interval covers of (0, 1) but you cannot find finitely many J_n 's to cover the open interval (0, 1).

The following is a very important feature of a compact set.

Theorem 2.3 Let A be a subset of \mathbb{R} . Then the following statements are equivalent.

- (i) For any open intervals cover $\{J_{\alpha}\}_{\alpha \in \Lambda}$ of A, we can find finitely many $J_{\alpha_1}, ..., J_{\alpha_N}$ such that $A \subseteq J_{\alpha_1} \cup \cdots \cup J_{\alpha_N}$.
- (ii) A is compact.
- (iii) A is closed and bounded.

Proof: The result will be shown by the following path

$$(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i).$$

For $(i) \Rightarrow (ii)$, assume that the condition (i) holds but A is not compact. Then there is a sequence (x_n) in A such that (x_n) has no subsequent which has the limit in A. Put X = $\{x_n : n = 1, 2, ...\}$. Then X is infinite. Also, for each element $a \in A$, there is $\delta_a > 0$ such that $J_a := (a - \delta_a, a + \delta_a) \cap X$ is finite. Indeed, if there is an element $a \in A$ such that $(a - \delta, a + \delta) \cap A$ is infinite for all $\delta > 0$, then (x_n) has a convergent subsequence with the limit a. On the other hand, we have $A \subseteq \bigcup_{a \in A} J_a$. Then by the compactness of A, we can find finitely many $a_1, ..., a_N$ such that $A \subseteq J_{a_1} \cup \cdots \cup J_{a_N}$. So we have $X \subseteq J_{a_1} \cup \cdots \cup J_{a_N}$. Then by the choice of J_a 's, X must be finite. This leads to a contradiction. Therefore, A must be compact.

The implication $(ii) \Rightarrow (iii)$ follows from Theorem 1.7 at once.

It remains to show $(iii) \Rightarrow (i)$. Suppose that A is closed and bounded. Then we can find a closed and bounded interval [a, b] such that $A \subseteq [a, b]$. Now let $\{J_{\alpha}\}_{\alpha \in \Lambda}$ be an open intervals cover of A. Notice that for each element $x \in [a, b] \setminus A$, there is $\delta_x > 0$ such that $(x - \delta_x, x + \delta_x) \cap A = \emptyset$ since A is closed by using Proposition 1.6. If we put $I_x = (x - \delta_x, x + \delta_x)$ for $x \in [a, b] \setminus A$, then we have

$$[a,b] \subseteq \bigcup_{\alpha \in \Lambda} J_{\alpha} \cup \bigcup_{x \in [a,b] \setminus A} I_x.$$

Using the Heine-Borel Theorem 2.1, we can find finitely many J_{α} 's and I_x 's, say $J_{\alpha_1}, ..., J_{\alpha_N}$ and $I_{x_1}, ..., I_{x_K}$, such that $A \subseteq [a, b] \subseteq J_{\alpha_1} \cup \cdots \cup J_{\alpha_N} \cup I_{x_1} \cup \cdots \cup I_{x_K}$. Note that $I_x \cap A = \emptyset$ for each $x \in [a, b] \setminus A$ by the choice of I_x . Therefore, we have $A \subseteq J_{\alpha_1} \cup \cdots \cup J_{\alpha_N}$ and hence A is compact.

The proof is finished.

Remark 2.4 In fact, the condition in Theorem 2.3(i) is the usual definition of a *compact set* for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A is said to be sequentially compact. Theorem 2.3 tells us that the notation of the compactness and the sequentially compactness are the same as in the case of a subset of \mathbb{R} . However, these two notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.

References

[1] R.G. Bartle and I.D. Sherbert, Introduction to Real Analysis, (4th ed), Wiley, (2011).