TA's solution to 2060B homework 8

p.246 Q4. (2 marks)

$$\lim_{n \to \infty} \frac{x^n}{1+x^n} = \begin{cases} 0 & \text{if } 0 \le x < 1\\ \frac{1}{2} & \text{if } x = 1\\ 1 & \text{if } 1 < x. \end{cases}$$

p.246 Q14. (3 marks)

Let $f_n(x) := \frac{x^n}{1+x^n}$. For any $y \in [0,b]$, we have $|f_n(y)| \le |y^n| \le b^n$ and so $||f_n||_{[0,b]} \le b^n$. This implies $\lim_{n\to\infty} ||f_n||_{[0,b]} = 0$. Therefore (f_n) converges uniformly to the zero function on [0,b].*

On the other hand, (f_n) does not converge uniformly on [0, 1]. If it did, then (f_n) converges uniformly to the zero function on [0, 1).[†] Therefore $\lim_{n\to\infty} ||f_n||_{[0,1)} = 0$. But for any $n \in \mathbb{N}$, we have $\sqrt[n]{0.5} \in [0, 1)$ and $|f_n(\sqrt[n]{0.5})| = \frac{1}{3}$, so $||f_n||_{[0,1)} \ge \frac{1}{3}$. This is a contradiction.

p.246 Q19. (3 marks)

Define $f_n: [0,\infty) \to \mathbb{R}$ by $f_n(x) := x^2 e^{-nx}$.[‡] We have

$$f'_n(x) = 2xe^{-nx} - x^2ne^{-nx} = x(2-xn)e^{-nx}.$$

By first derivative test, f_n attains absolute maximum at $\frac{2}{n}$, whence $||f_n|| = \frac{4e^{-2}}{n^2}$. It follows that (f_n) converges uniformly to the zero function.

^{*}We have used textbook 8.1.8 Lemma. Reading its proof carefully, we may skip the boundedness condition. This condition is for ensuring that $||g_n - g||_A$ exists in \mathbb{R} . However, if $|g_n - g|$ is unbounded on A for infinitely many n, then g_n cannot converge uniformly to g on A.

[†]" $f_n \Rightarrow g$ on A" implies " $f_n \Rightarrow g$ on B" for any nonempty $B \subseteq A$. Also, for $a \in A$ it implies " $\lim_{n\to\infty} f_n(a) = g(a)$ ". Since limit of sequence is unique, g(a) is given by Q4.

[‡]Notice that the pointwise limit of f_n is the zero function. Then the greatest hindrance for f_n being not uniformly convergent is that for any n, there always is some x_n so that $|f_n(x_n)|$ keeps large. As a result, we want to study the maximum of $|f_n|$.

p.246 Q22. (2 marks)

Since $||f_n - f|| = \frac{1}{n}$, we see that (f_n) converges uniformly to f.[§] On the other hand, (f_n^2) does not converge uniformly on \mathbb{R} . If it did, then $|f_n^2(x) - f^2(x)| \to 0$ uniformly when $n \to \infty$.[¶] But for any $n \in \mathbb{N}$, we have

$$\left|f_n^2(n) - f^2(n)\right| = \left|f_n(n) - f(n)\right| \cdot \left|f_n(n) + f(n)\right| = \frac{2n + \frac{1}{n}}{n} > 2.$$

This is a contradiction.

[§]Again it is textbook 8.1.8 Lemma with the boundedness condition skipped.

[¶]By the same reason given in the Q14's footnote, the only possible uniform limit of (f_n^2) is f^2 .