THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Tutorial Note 7 Oct 31, 2019

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

Fundamental theorems (continued)

Proposition. If (x_n) in a Banach space is such that $(f(x_n))$ is bounded for all $f \in X^*$, than $(\Vert x_n \Vert)$ is bounded.

Example 6.8. Let X be an infinite-dimensional Banach space and β a normalized Hamel basis in X. We choose a sequence (e_n) in B and define $f(e_n) = n$ for $n \in \mathbb{N}$ and $f(e) = 0$ for $e \in \mathcal{B} \setminus \{e_n : n \in \mathbb{N}\}\$. By extending f linearly to the entire space X, we obtain an unbounded real linear functional, which we denote by the same symbol f .

By the closed graph theorem, the graph $G(f)$ is not closed in $X \times \mathbb{R}$ in the product topology defined by the norm

$$
||(x,t)|| = ||x|| + |t|, \quad x \in X, t \in \mathbb{R}.
$$

 $G(f)$ is not a Banach space since a subspace of a Banach space is complete if and only if it's closed. We define $T: G(f) \to X$ by $T(x, f(x)) = x$ for $x \in X$. Clearly, T is a bijection. The operator T is bounded, because

$$
\frac{\|x\|}{\|(x,f(x))\|} \le 1, \quad \forall x \in X, x \ne 0.
$$

Inasmuch as

$$
\frac{\|(x, f(x))\|}{\|x\|} \ge \frac{|f(x)|}{\|x\|}, \quad \forall x \in X, x \ne 0,
$$

and f is unbounded, the operator T^{-1} is unbounded.

An example to illustrate UBT. Let $T_n = S^n$, where the operator $S: l^2 \to l^2$ is defined by

$$
(x_1,x_2,x_3,\cdots)\mapsto (x_2,x_3,x_4,\cdots).
$$

Find a bound for $||T_n x||$; find $\lim_{n\to\infty}||T_n x||$, $||T_n||$ and $\lim_{n\to\infty}||T_n||$.

Answers: $||T_n x|| \le ||x||; 0; 1; 1.$

Example. The completeness of X is essential and cannot be dropped in Uniform Boundedness Theorem. Let's consider the subspace $X \subset l^{\infty}$ consisting of all $x = (x_n)$ such that $x_n = 0$ for $n \geq N \in \mathbb{N}$, where N depends on x, and let T_n be defined by

$$
T_n x = n x_n.
$$

It can be checked that X is incomplete. And for any $x \in X$,

$$
|T_n x| = \begin{cases} n|x_n| \le N||x||, & n < N, \\ 0, & n \ge N. \end{cases}
$$

So that $|T_n x|$ is bounded for every $x \in X$. But $\{||T_n||\}$ is unbounded since

$$
||T_n|| = n.
$$