THE CHINESE UNIVERSITY OF HONG KONG MATH4010 Tutorial Note 5 Oct 17, 2019

If you find any mistakes or typos, please report them to ypyang@math.cuhk.edu.hk

1.

(a) Consider the subspace Z of X consisting of all elements $x = \alpha x_0$ where α is a scalar. On Z we define a linear functional f by

$$
f(x) = f(\alpha x_0) = \alpha.
$$

f is bounded and has norm $||x_0||^{-1}$ because

$$
|f(x)| = |f(\alpha x_0)| = |\alpha| = ||x_0||^{-1}||x||.
$$

By Hahn-Banach theorem, f has a linear extension \tilde{f} from Z to X, with norm $||x_0||^{-1}$. We can see that

$$
f(x_0) = f(x_0) = 1.
$$

(b) Let $g : \mathbb{K} \to X$ be defined by $g(\alpha) = \alpha x_0$. Let $T = g \circ \tilde{f}$. Then T is linear and

$$
Tx_0 = g(\widetilde{f}(x_0)) = g(1) = x_0 \Longrightarrow ||T|| \ge 1.
$$

On the other hand, it can be seen that $||g|| = ||x_0||$ and $||T|| \le ||g|| ||\tilde{f}|| = 1$. Therefore, $||T|| = 1.$

Choose $y \in X \setminus Z$ and we have $Ty = \widetilde{f}(y)x_0 \in Z \Longrightarrow Ty \neq y \Longrightarrow T$ is not identity.

2. For $y \in l^2$, we have

$$
||M_x(y)||_2 = \left(\sum_{k=1}^{\infty} |x(k)y(k)|^2\right)^{\frac{1}{2}} \le \sup_{k \in \mathbb{N}} |x(k)| \left(\sum_{k=1}^{\infty} |y(k)|^2\right)^{\frac{1}{2}} = ||x||_{\infty} ||y||_2.
$$

Hence $||M_x|| \le ||x||_{\infty}$. Let (e_k) be the Schauder basis for l^2 . Clearly, $M_x(e_k) = x(k)e_k$ for $k \in \mathbb{N}$. Then we have

$$
||M_x|| = \sup_{||y||=1} ||M_x(y)||_2 \ge \sup_{k \in \mathbb{N}} ||M_x(e_k)||_2 = \sup_{k \in \mathbb{N}} |x(k)| = ||x||_{\infty}.
$$

It follows that $||M_x|| = ||x||_{\infty}$. 3.

$$
||Tf||_1 = \int_a^b \left| \int_a^x f(t) dt \right| dx \le \int_a^b \int_a^x |f(t)| dt dx = \int_a^b \int_t^b |f(t)| dx dt
$$

=
$$
\int_a^b (b-t) |f(t)| dt \le \int_a^b (b-a) |f(t)| dt = (b-a) ||f||_1 \implies ||T|| \le b-a.
$$

Take $f_n(t) = (b-t)^n, a \le t \le b$ and then $||f_n||_1 =$ \int^b a $(b-t)^n dt =$ $(b-a)^{n+1}$ $\frac{a}{n+1}$ and $Tf_n(x) =$ $(b-a)^{n+1} - (b-x)^{n+1}$ $n+1$. Therefore,

$$
||Tf_n||_1 = \frac{(b-a)^{n+2}}{n+1} - \frac{(b-a)^{n+2}}{(n+1)(n+2)} = \frac{(b-a)^{n+2}}{n+2}.
$$

It follows that

$$
||T|| \ge \frac{||Tf_n||_1}{||f_n||_1} = \frac{(n+1)(b-a)}{n+2}.
$$

Let $n \to \infty$ and we have $||T|| \ge b - a$. As a conclusion, $||T|| = b - a$.

Example. Hahn-Banach theorem (extension for linear functions). Let X be a real vector space and p a sublinear functional on X. Furthermore, let f be a linear functional which is defined on a subspace Z of X and satisfies

$$
f(x) \le p(x), \ \ \forall x \in Z.
$$

Then f has a linear extension \tilde{f} from Z to Z satisfying

$$
\widetilde{f}(x) \le p(x), \quad \forall x \in X.
$$

We consider $X = (\mathbb{R}^2, \|\cdot\|_2), Z = \{(x, 2x)|x \in \mathbb{R}\}\$ and the linear functional $f: Z \to \mathbb{R}$ given by $f(x, 2x) = x$. Let P be the orthogonal projection onto Z:

$$
P(x,y) = \left(\frac{x+2y}{5}, \frac{2x+4y}{5}\right).
$$

Notice that

$$
f(x,y) = x = \langle (x,y), (1,0) \rangle = \langle (x,y), P(1,0) \rangle = \langle (x,y), \left(\frac{1}{5}, \frac{2}{5}\right) \rangle, \quad (x,y) \in Z.
$$

Then we have a Hahn-Banach extension of f given by

$$
\widetilde{f}(x,y) = \frac{x+2y}{5}.
$$

Example. To illustrate the Hahn-Banach theorem, consider a functional f on the Euclidean plane $Z = \mathbb{R}^2$ defined by $f(x) = \alpha_1 x_1 + \alpha_2 x_2, x = (x_1, x_2)$. Then we have $||f||_Z = \sqrt{\alpha_1^2 + \alpha_2^2}$. It has a linear extension \widetilde{f} to $X = \mathbb{R}^3$ defined by

$$
\widetilde{f}(x) = \alpha_1 x_1 + \alpha_2 x_2, x = (x_1, x_2, x_3).
$$

Also, given $x_0 = (a, b, c) \neq (0, 0, 0)$, if we define

$$
g(x) = \frac{ax_1 + bx_2 + cx_3}{\sqrt{a^2 + b^2 + c^2}},
$$

then we have $||g|| = 1$, $g(x_0) = ||x_0||$.

Example. Show that for any sphere $S(0, r)$ in a normed space X and any point $x_0 \in S(0, r)$ there is a hyperplane H_0 through x_0 such that the ball $B(0, r)$ lies entirely in one of the two half planes determined by H_0 .

Solution. There exists $\tilde{f} \in X^*$ such that $\tilde{f}(x_0) = ||x_0||, ||\tilde{f}|| = 1$. Define

$$
H_0 = \{x|\tilde{f}(x) = r\}.
$$

Then we have $x_0 \in H_0$. Moreover, for any $x \in \overline{B}(0,r)$, it follows that

 $|\widetilde{f}(x)| \leq ||x|| \leq r.$