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Elementary inequalities

Jensen’s inequality

(Finite form) For a real convex function ϕ, numbers x1, x2, · · · , xn in its domain, and positive
weights ai, Jensen’s inequality can be stated as

ϕ

(
1∑
ai

∑
aixi

)
≤ 1∑

ai

∑
aiϕ(xi).

(Measure-theoretic and probabilistic form) Let (Ω, A, µ) be a probability space such that µ(Ω) = 1.
If g is a real valued function which is µ-integrable and ϕ is a convex function on the real line, then

ϕ

(∫
Ω

g dµ

)
≤
∫

Ω

ϕ ◦ g dµ.

Young’s inequality

(for products) In standard form, the inequality states that if a, b are nonnegative real numbers and

p, q > 1 such that
1

p
+

1

q
= 1, then

ab ≤ ap

p
+
bq

q
.

The equality holds if and only if ap = bq.

Proof: Consider a real-valued continuous and strictly increasing function f on [0, c] with c > 0
and f(0) = 0. Let f−1 be its inverse function. Then for all a ∈ [0, c] and b ∈ [0, f(c)],

ab ≤
∫ a

0

f(x) dx+

∫ b

0

f−1(x) dx

with equality if and only if b = f(a).

Put f(x) = xp−1 and f−1(y) = yq−1 and it reduces to the required inequality.

The numbers p, q are said to be Hölder conjugates of each other.

Hölder’s inequality

(for the counting measure) If p, q are Hölder conjugates, then∑
|xiyi| ≤

(∑
|xi|p

) 1
p
(∑

|yi|q
) 1

q

for complex numbers x1, x2, · · · and y1, y2, · · · .



2

Proof: WLOG, we assume that
∑
|xi|p > 0,

∑
|yi|q > 0. Put

a =
|xi|

(
∑
|xi|p)

1
p

, b =
|yi|

(
∑
|yi|q)

1
q

in Young’s inequality and we get

|xiyi|
(
∑
|xi|p)

1
p (
∑
|yi|q)

1
q

≤ |xi|p

p
∑
|xi|p

+
|yi|q

q
∑
|yi|q

, 1 ≤ i ≤ n.

Summing up over i, ∑
|xiyi|

(
∑
|xi|p)

1
p (
∑
|yi|q)

1
q

≤
∑
|xi|p

p
∑
|xi|p

+

∑
|yi|q

q
∑
|yi|q

=
1

p
+

1

q
= 1.

(for the Lebesgue measure) If Ω is a measurable subset of Rn with the Lebesgue measure and f, g
are measurable complex-valued functions on Ω, then∫

Ω

|f(x)g(x)| dx ≤
(∫

Ω

|f(x)|p dx
) 1

p
(∫

Ω

|g(x)|q dx
) 1

q

.

Minkovski inequality

(for the counting measure) For any p ≥ 1,(∑
|xi + yi|p

) 1
p ≤

(∑
|xi|p

) 1
p

+
(∑

|yi|p
) 1

p

for complex numbers x1, x2, · · · and y1, y2, · · · .
Proof (of the case p > 1): From Hölder inequality,∑

|xi + yi|p =
∑
|xi + yi||xi + yi|p−1 ≤

∑
|xi||xi + yi|p−1 +

∑
|yi||xi + yi|p−1

≤
(∑

|xi|p
) 1

p
(∑

|xi + yi|(p−1)q
) 1

q
+
(∑

|yi|p
) 1

p
(∑

|xi + yi|(p−1)q
) 1

q

=
(∑

|xi|p
) 1

p
(∑

|xi + yi|p
) 1

q
+
(∑

|yi|p
) 1

p
(∑

|xi + yi|p
) 1

q
.

Divide both sides by
(∑

|xi + yi|p
) 1

q
and the desired inequality follows.

(for the Lebesgue measure) If Ω is a measurable subset of Rn with the Lebesgue measure and f, g
are measurable complex-valued functions on Ω, then(∫

Ω

|f(x) + g(x)|p dx
) 1

p

≤
(∫

Ω

|f(x)|p dx
) 1

p

+

(∫
Ω

|g(x)|p dx
) 1

p

.
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Banach spaces

Example: Let 1 ≤ p <∞. The space lp is a Banach space.

Proof: 1. lp is a normed space (omitted, triangle inequality comes from the Minkovski’s inequal-
ity).

2. To show the completeness, we consider a Cauchy sequence {xn} in lp, where xm = (xm1 , x
m
2 , · · · ).

Then ∀ε > 0 there exists N ∈ N such that ∀m,n > N ,

‖xm − xn‖ =

(
∞∑
j=1

∣∣xmj − xnj ∣∣p
) 1

p

< ε. (1)

It follows that for every j = 1, 2, · · · we have∣∣xmj − xnj ∣∣ < ε, m, n > N.

We choose a fixed j. Then (x1
j , x

2
j , · · · ) is a Cauchy sequence of numbers and convergent, say,

xmj → xj as m→∞. Using these limits, we define x = (x1, x2, · · · ) and desire to show that x ∈ lp
and xm → x.

From (1) we have ∀m,n > N ,

k∑
j=1

∣∣xmj − xnj ∣∣p < εp, k = 1, 2, · · · .

Letting n→∞, we obtain for m > N

k∑
j=1

∣∣xmj − xj∣∣p ≤ εp, k = 1, 2, · · · .

We may now let k →∞. Then for m > N ,

∞∑
j=1

∣∣xmj − xj∣∣p ≤ εp. (2)

This shows that xm − x ∈ lp. Since xm ∈ lp, it follows by means of Minkovski’s inequality that

x = xm + (x− xm) ∈ lp.

Furthermore, (2) implies that xm → x and thus lp is complete.

Remark. l∞ is also a Banach space.

For p ∈ [1,+∞], the spaces lp are increasing in p: for 1 ≤ p < q ≤ +∞, one has ‖f‖q ≤ ‖f‖p.

Example. X = C(K), where K is a compact subset in Rn. Define

‖f‖X = sup
x∈K
|f(x)|.
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Then (X, ‖ · ‖X) is a Banach space.

Proof: 1. (X, ‖ · ‖X) is normed space.

2. Completeness. Suppose fn is a Cauchy sequence in X. Then ∀ε > 0, there exists N ∈ N such
that ∀m, k > N and x ∈ K, it holds that

sup
x∈K
|fm(x)− fk(x)| < ε.

Therefore, for each x ∈ K, {fm(x)} is Cauchy in Rn and there exists a function f(x) such that
{fm(x)} converges pointwisely to f(x) in K. Since N is independent of x, we can take k → ∞
and consequently fm converges uniformly to f .

Hence f ∈ C(K) by compactness of K, which ends the proof.

Example. Let K = [0, 1]. Define a norm ‖f‖1 :=

∫ 1

0

|f(x)| dx. Then (C[0, 1], ‖ · ‖1) is not a

Banach space.

Consider the sequence

{fn(x)}n≥2 =


0, 0 ≤ x ≤ 1

2
,

n(x− 1
2
), 1

2
< x ≤ 1

2
+ 1

n
,

1, 1
2

+ 1
n
< x ≤ 1.

It’s a Cauchy sequence in (C[0, 1], ‖ · ‖1) since

‖fn − fm‖1 =
1

2

∣∣∣∣ 1n − 1

m

∣∣∣∣→ 0 as n,m→∞.

Let

f(x) =

{
0, 0 ≤ x ≤ 1

2
,

1, 1
2
< x ≤ 1.

Then

‖fn − f‖1 =
1

2n
→ 0 as n→∞.

However, f /∈ C[0, 1] and hence (C[0, 1], ‖ · ‖1) is not a Banach space.


