Tutorial 2 MATH4010 Functional Analysis 2021-09-23 Thursday

Recall

On a finite dimensional vector space, all the norms are equivalent. For normed spaces, finite
dimensionality <= locally compactness.

Let X,Y be normed spaces and (7,,)22,,7: X — Y be linear operators.

n=1»
e T continuous <= T continuous at 0 <= 7T bounded.

e If dim X < oo, then T" must be countinous. Moreover, T,z — Tz for all z € X <=

T, M) T. The direction = may not hold when dim X = oo.

If dimY < oo, then T bounded <= kerT closed. In particular, this holds for linear
functionals. The direction <= may not hold when dimY = oc.

Equivalent definitions of the operator norm

Tx
17 = sup{%: r € X, o]l 0}
— sup{||Tz]|: @ € X, o] = 1}
=sup{||Tz|:z € X, ||z|| <1}

= inf{M > 0: |Tz| < M|jz|, Yz € X}.

The operator norm depends on both of the norms in the domain X and in the range Y.

Dual space

Example 1 (Dual-space relationship). Let 1 < p < oo and 1 < ¢ < oo such that %%—% = 1. Then
(eP)* = (1.

Proof. We begin with some convenient notations. For xz = (x(2))$2, € £ and y = (y(1))32, € ¢4,

define a pairing

(.y) =) x(@)y(i). (1)

i=1
By Holder’s inequality,

[(z, y)| < Z @y (@) < llzllpllylly < oo (2)

Hence (-,-): P x (7 — K, where K = R or C. It is readily checked that for a € K, z,% € ¢’ and
y e,
(ax +T,y) = afz,y) + (Z,y) and (z,y) = (y, z). (3)

By (2) and (3), for any fixed y € ¢4, the map (-,y): # — K is continuous and linear, i.e.,
(-,y) € (¢P)*. To prove (¢?)* = (1, we will show that the map

T: (4 - ()
y = ()
is an isometric isomorphism.
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(i) (linear and injective) By (3), € is linear. If (-, y) is identically zero on ¢?, then by applying
(-,y) to e;, we get y =0 € £9 | thus T is injective.

(ii) (surjective) Let A € (¢7)*. We will find y € ¢ such that for all x € #, Ax = (z,y). If
A = 0, then y = 0 satisfying the requirement. Below assume A # 0. (Recall basis is like
the skeleton of a vector space. To determine the behavior of a linear map A on the whole
space, it is often enough to determine the how A acts on the basis vectors.) For i € N, let
e; be the sequence taking 1 on i-th term and 0 on all the other terms. Define a sequence
y = (Ae;)2,. We will check y is the desired sequence.

Let x € (7. In Homework 2, we have proved {e;}2, is a Schauder basis in 7 (1 < p < c0).
Then x = Y .o, x(i)e; € 7. Since A is continuous and linear,

Az = A (Zx(i)ei) = a(i)Ae; = (x,y). (4)

Next we check y € 9.

When ¢ = oo. Suppose on the contrary that y ¢ ¢>°. Then there exist 7y € N such that
ly(io)| > 2||A||. However, |y(io)| = |Aes,| < ||A||, which is a contradiction. Hence y € £*°.

ly(0)]*  exp(=0;) i < n;

_ Then y, € ?. By (4) and the
0 ,1 > n.

When ¢ < oo. Define y, = {

boundedness of A,

Z|y [{yns )| = Ayl < (IAIHIYnllp = A Zly He,

=1

Dividing both sides by (31, |y(i)|9)/? (that is nonzero when n large enough),

Z!y N A

Letting n — oo, we have y € (9.
(ili) (isometric) Let y € £9. By (2), [|[Ty| < ||lyll,- If y = 0, then Ty = 0. Below assume y # 0.

When ¢ = co. For any € > 0, there exists ¢ € N such that |y(i)| > ||y||cc —&. Hence

[{ei )| = ly(@D)] = llylle =

Letting ¢ — 0 and since ||¢;||; = 1 for all ¢ € N, we have ||[Ty|| > ||y]]co-
When g < co. Write y(i) = |y(i)| exp(6;) for i € N. Define the ‘conjugate function’

= llyllg™ (ly )"~  exp(=6:)) 2, - (5)

Then [ly*|[, = 1 and (y*,y) = [lylls- Hence [Ty = [lyll,-
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Remark. Example 1 can be generalized to LP(u) with u being o-finite. In the general proof, we can
use [ fgdp as the pairing in (1), integral-version Holder inequality in (2), apply Radon-Nikodym
to find the candidate ‘y’ in (ii). The proof idea of the other parts is similar. The construction in
(5) is an explicit example of [LN, Prop. 4.5].

For vector spaces A and B, denote A — B if A C B. For Banach spaces X and Y, denote
X 5 Y if Y = X*. Recall ()" = (. Let1<p<2and2<q<oowith%+%:1. Then we
can summarize

Cop —— 0V ——= PP s (2 5 1 3 ¢y — [

Remark. For a locally compact Hausdorff space X (Here X = N for ¢), Riesz representation
characterizes that Cy(X)* = M(X), where M (X) denotes the space of regular Borel measures.

(Take a o-finite measure y on X and define the L'(u). There is a natural way to conclude
L'(p) € M(X) where the inclusion is usually strict. However, in our case where X = N and
p = # (the counting measure), we have Cy(N) = ¢y and L'(#) = ¢*. The counting measure #
has a special property that every measure n € M(N) is absolutely continuous with respect to
#. By Radon-Nikodym, we can identify M (N) = L'(#) = ¢'. Hence M(N) = ¢}, = (' becomes
reasonable. )

Below is an application of the representation of (£?)*.

o

Example 2. For z = (2(4))2, € (%, define Az = > 7, x( Z). Show that A € (£2)* and compute
i

IA]l-

Proof. For ¢ € N, define
=2k,
0 ,i=2k-1,

| =

y(i) = Ae;) =

where {e;}22, is the standard Schauder basis of 2. Let y = (y(i))2,. Then A- = (-, y).

Since ||lyl. = (e, &)Y? = 7/V6, it follows from Example 1 that A € (£2)* and [|A|| =
lyll = 7/V/6. []
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