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Recall

On a finite dimensional vector space, all the norms are equivalent. For normed spaces, finite

dimensionality ⇐⇒ locally compactness.

Let X, Y be normed spaces and (Tn)∞n=1, T : X → Y be linear operators.

• T continuous ⇐⇒ T continuous at 0 ⇐⇒ T bounded.

• If dimX < ∞, then T must be countinous. Moreover, Tnx → Tx for all x ∈ X ⇐⇒
Tn

‖·‖−→ T . The direction =⇒ may not hold when dimX =∞.

• If dimY < ∞, then T bounded ⇐⇒ kerT closed. In particular, this holds for linear

functionals. The direction ⇐= may not hold when dimY =∞.

• Equivalent definitions of the operator norm

‖T‖ = sup{‖Tx‖
‖x‖

: x ∈ X, ‖x‖ 6= 0}

= sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}
= inf{M > 0: ‖Tx‖ ≤M‖x‖, ∀x ∈ X}.

The operator norm depends on both of the norms in the domain X and in the range Y .

Dual space

Example 1 (Dual-space relationship). Let 1 ≤ p <∞ and 1 < q ≤ ∞ such that 1
p

+ 1
q

= 1. Then

(`p)∗ = `q.

Proof. We begin with some convenient notations. For x = (x(i))∞i=1 ∈ `p and y = (y(i))∞i=1 ∈ `q,
define a pairing

〈x, y〉 :=
∞∑
i=1

x(i)y(i). (1)

By Hölder’s inequality,

|〈x, y〉| ≤
∞∑
i=1

|x(i)y(i)| ≤ ‖x‖p‖y‖q <∞. (2)

Hence 〈·, ·〉 : `p × `q → K, where K = R or C. It is readily checked that for α ∈ K, x, x̃ ∈ `p and

y ∈ `q,
〈αx+ x̃, y〉 = α〈x, y〉+ 〈x̃, y〉 and 〈x, y〉 = 〈y, x〉. (3)

By (2) and (3), for any fixed y ∈ `q, the map 〈·, y〉 : `p → K is continuous and linear, i.e.,

〈·, y〉 ∈ (`p)∗. To prove (`p)∗ = `q, we will show that the map

T : `q → (`p)∗

y 7→ 〈·, y〉

is an isometric isomorphism.
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(i) (linear and injective) By (3), Ω is linear. If 〈·, y〉 is identically zero on `p, then by applying

〈·, y〉 to ei, we get y = 0 ∈ `q , thus T is injective.

(ii) (surjective) Let Λ ∈ (`p)∗. We will find y ∈ `q such that for all x ∈ `p, Λx = 〈x, y〉. If

Λ = 0, then y = 0 satisfying the requirement. Below assume Λ 6= 0. (Recall basis is like

the skeleton of a vector space. To determine the behavior of a linear map Λ on the whole

space, it is often enough to determine the how Λ acts on the basis vectors.) For i ∈ N, let

ei be the sequence taking 1 on i-th term and 0 on all the other terms. Define a sequence

y = (Λei)
∞
i=1. We will check y is the desired sequence.

Let x ∈ `p. In Homework 2, we have proved {ei}∞i=1 is a Schauder basis in `p (1 ≤ p <∞).

Then x =
∑∞

i=1 x(i)ei ∈ `p. Since Λ is continuous and linear,

Λx = Λ

(
∞∑
i=1

x(i)ei

)
=
∞∑
i=1

x(i)Λei = 〈x, y〉. (4)

Next we check y ∈ `q.

When q = ∞. Suppose on the contrary that y /∈ `∞. Then there exist i0 ∈ N such that

|y(i0)| > 2‖Λ‖. However, |y(i0)| = |Λei0| ≤ ‖Λ‖, which is a contradiction. Hence y ∈ `∞.

When q < ∞. Define yn =

{
|y(i)|q−1 exp(−θi) , i ≤ n;

0 , i > n.
Then yn ∈ `p. By (4) and the

boundedness of Λ,

n∑
i=1

|y(i)|q = |〈yn, y〉| = |Λyn| ≤ ‖Λ‖‖yn‖p = ‖Λ‖(
n∑

i=1

|y(i)|q)1/p.

Dividing both sides by (
∑n

i=1|y(i)|q)1/p (that is nonzero when n large enough),

(
n∑

i=1

|y(i)|q)1/q ≤ ‖Λ‖.

Letting n→∞, we have y ∈ `q.

(iii) (isometric) Let y ∈ `q. By (2), ‖Ty‖ ≤ ‖y‖q. If y = 0, then Ty = 0. Below assume y 6= 0.

When q =∞. For any ε > 0, there exists i ∈ N such that |y(i)| ≥ ‖y‖∞ − ε. Hence

|〈ei, y〉| = |y(i)| ≥ ‖y‖∞ − ε.

Letting ε→ 0 and since ‖ei‖1 = 1 for all i ∈ N, we have ‖Ty‖ ≥ ‖y‖∞.

When q <∞. Write y(i) = |y(i)| exp(θi) for i ∈ N. Define the ‘conjugate function’

y∗ = ‖y‖1−qq

(
|y(i)|q−1 exp(−θi)

)∞
i=1

. (5)

Then ‖y∗‖p = 1 and 〈y∗, y〉 = ‖y‖q. Hence ‖Ty‖ ≥ ‖y‖q.
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Remark. Example 1 can be generalized to Lp(µ) with µ being σ-finite. In the general proof, we can

use
∫
fgdµ as the pairing in (1), integral-version Hölder inequality in (2), apply Radon-Nikodym

to find the candidate ‘y’ in (ii). The proof idea of the other parts is similar. The construction in

(5) is an explicit example of [LN, Prop. 4.5].

For vector spaces A and B, denote A ↪→ B if A ⊂ B. For Banach spaces X and Y , denote

X
∗−→ Y if Y = X∗. Recall (c0)

∗ = `1. Let 1 < p < 2 and 2 < q < ∞ with 1
p

+ 1
q

= 1. Then we

can summarize

c00 `1 `p `2 `q c0 `∞

∗

∗
∗

∗

∗

Remark. For a locally compact Hausdorff space X (Here X = N for c0), Riesz representation

characterizes that C0(X)∗ = M(X), where M(X) denotes the space of regular Borel measures.

(Take a σ-finite measure µ on X and define the L1(µ). There is a natural way to conclude

L1(µ) ⊂ M(X) where the inclusion is usually strict. However, in our case where X = N and

µ = # (the counting measure), we have C0(N) = c0 and L1(#) = `1. The counting measure #

has a special property that every measure η ∈ M(N) is absolutely continuous with respect to

#. By Radon-Nikodym, we can identify M(N) = L1(#) = `1. Hence M(N) = c∗0 = `1 becomes

reasonable. )

Below is an application of the representation of (`2)∗.

Example 2. For x = (x(i))∞i=1 ∈ `2, define Λx =
∑∞

i=1

x(2i)

i
. Show that Λ ∈ (`2)∗ and compute

‖Λ‖.

Proof. For i ∈ N, define

y(i) = Λ(ei) =


1

k
, i = 2k,

0 , i = 2k − 1,

where {ei}∞i=1 is the standard Schauder basis of `2. Let y = (y(i))∞i=1. Then Λ· = 〈·, y〉.

Since ‖y‖2 = (
∑∞

k=1
1
k2

)1/2 = π/
√

6, it follows from Example 1 that Λ ∈ (`2)∗ and ‖Λ‖ =

‖y‖2 = π/
√

6.
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