MATH 2050A: Mathematical Analysis I (Appendix)
(2019 1st term)

1 Compact subsets of R

Definition 1.1 Let A be a subset of R. A point z € R is called a limit point of A if for any
d > 0, there is an element a € A such that 0 < |z —a| < 4.
Put D(A) the set of all limit points of A.

Example 1.2 (i) D([a,b]) = D((a,b)) = [a, b].

(i) D([0,1]U{2}) = [0,1].

(iii) D(N) = 0.

(iv) D({a}) = 0 for any a € R.
Definition 1.3 A subset A of R is said to be closed in R if D(A) C A.

Example 1.4 (i) {a};[a,b];[0,1] U{2}; N and R all are closed subsets of R.

(ii) (a,b) and Q are not closed.

The following Lemma can be directly shown by the definition, so, the proof is omitted here.

Lemma 1.5 Let A be a subset of R. The following statements are equivalent.
(i) A is closed.
(i1) For each element x € R\ A, there is 6, > 0 such that (x — 6,z + 6,) N A =10.

(iii) If (zy,) is a sequence in A and lim x,, exists, then limz, € A.

Definition 1.6 Let A be a subset of R. A is said to be compact (more precise, sequentially
compact) if every sequence (x,) in A has a convergent subsequence (x,, ) with limy z,, € A.

Example 1.7 (i) Every closed and bounded interval is compact.
In fact, if (z,,) is any sequence in a closed and bounded interval [a, b], then (z,,) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (x,) has a convergent
subsequence (x,, ). Notice that since a < z,, < b for all k, then a < limg z,, < b, and
thus limy, z,,, € [a,b]. Therefore A is compact.



(ii) (0,1] is not compact. In fact, if we consider x, = 1/n, then (z,,) is a sequence in (0, 1]
but it has no convergent subsequence with the limit sitting in (0, 1].

Theorem 1.8 A subset A of R is compact if and only if A is closed and bounded.

2 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f: A — R a function defined
on A.

Proposition 2.1 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

f(c) = max{f(x):x € A} and f(b) = min{f(z): z € A}.

Proof: By considering the function —f on A, it needs to show that f(c) = max{f(z) : z € A}
for some c € A.

We first claim that f is bounded on A, that is, there is M > 0 such that |f(z)] < M for
all x € A. Suppose not. Then for each n € N, we can find a,, € A such that |f(a,)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem 1.8). So, (ay,)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ay, ) of (a,). Put a = limg ay,. Since A is closed and f is continuous, a € A,
from this, it follows that f(a) = limg f(ap,). It is absurd because ny < |f(an,)| — |f(a)| for
all k£ and ny — oo. So f must be bounded. So L := sup{f(x) : = € A} must exist by the
Axiom of Completeness.

It remains to show that there is a point ¢ € A such that f(c) = L. In fact, by the definition
of supremum, there is a sequence (z,,) in A such that lim,, f(z,) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (z, ) of (z,) with limy z,, € A.
If we put ¢ := limy x,,, € A, then f(c) = limy, f(xy, ) = L as desired. The proof is finished.

g

Proposition 2.2 If f: A — R is continuous and A is compact, then the image f(A) is com-
pact. Furthermore, if f is injective, then the inverse map f~': f(A) — A is also continuous.

Proof: Recall the fact that a subset of R is closed if and only if it is closed and bounded (see
Theorem 1.8). So, it needs to show that f(A) is a closed and bounded set. We first notice
that f(A) is bounded by Proposition 2.1. It remains to show that f(A) is a closed subset of
R. Let y € f(A). Then there is a sequence (x,) in A such that lim f(x,) = y. Then by the
compactness of A, there is a convergent subsequence (zy,) of (xy) such that limy z,, € A.
Since f is continuous, it follows that y = limy, f(zp,) = f(limg 2y, ) € f(A) and thus f(A) is
closed.

Concerning the last assertion, let B = f(A) and ¢ = f~' : B — A. Suppose that g is not
continuous at some b € B. Put a = g(b) € A. Then there are n > 0 and a sequence (y,)
in B such that limy, = b but |g(y,) — g(b)| > n for all n. Let z, := g(y,) € A. So, by the
compactness of A, there is a convergent subsequence (x,, ) of (z,) such that limy x,, € A. Let




a’ = limg x,,. Then we have f(a’) = limy f(zy,) = limg y,, = b. On the other hand, since
lg(yn) — g(b)| > n for all n, we see that

|Z0, — al = 19(Yn,,) —g(b)| > 1 >0

for all k£ and hence |a’ — a| > 0. This implies that a # o’ but f(a’) = b = f(a). It contradicts
to f being injective.
The proof is finished. O

Remark 2.3 The assumption of the compactness in the last assertion of Proposition 2.2 is
essential. For example, consider A = [0,1) U [2,3] and define f : A — R by

K if x€[0,1)
f(m)_{x—1 if zel2,3]

Then f(A) = [0,2] and f is a continuous bijection from A onto [0,2] but =1 :[0,2] — A is
not continuous at y = 1.

Example 2.4 By Proposition 2.2, it is impossible to find a continuous surjection from [0, 1]
onto (0, 1) since [0, 1] is compact but (0, 1) is not. Thus [0, 1] is not homeomorphic to (0,1).

Definition 2.5 A function f: A — R is said to be uniformly continuous on A if for any € > 0,
there is 6 > 0 such that |f(x) — f(y)| < € whenever z,y € A with |z — y| < §.

Remark 2.6 It is clear that if f is uniformly continuous on A, then it must be continuous on
A. However, the converse does not hold. For example, consider the function f : (0,1] — R
defined by f(x) := 1/z. Then f is continuous on (0, 1] but it is not uniformly continuous on
(0,1]. Notice that f is not uniformly continuous on A means that

there is € > 0 such that for any § > 0, there are x,y € A with |x —y| < § but |f(z) — f(y)| > €.

Notice that 1/x — oo as x — 0+. So if we let e = 1, then for any 6 > 0, we choose n € N
such that 1/n < ¢ and thus we have |1/2n — 1/n| = 1/2n < 6 but |f(1/n) — f(1/2n)| =n >
1 = . Therefore, f is not uniformly continuous on (0, 1].

Example 2.7 Let 0 < a < 1. Define f(x) = 1/z for € [a,1]. Then f is uniformly continuous
n [a,1]. In fact for z,y € [a, 1], we have

1 1 — —
@) - 1wl =1 -5 = = < 2o

So for any € > 0, we can take 0 < § < a?c. Thus if z,y € [a,1] with |z — y| < 6, then we have
|f(x) — f(y)| < € and hence f is uniformly continuous on [a, 1].

Proposition 2.8 If f is continuous on a compact set A, then f is uniformly continuous on

A.



Proof: Suppose that f is not uniformly continuous on A. Then there is € > 0 such that for each
n=1,2,.., we can find x,, and y,, in A with |z, —y,| < 1/n but |f(z,)— f(yn)| > €. Notice that
by the compactness of A, (z,,) has a convergent subsequence (z,,) with a = limg z,, € A.
Now applying sequentially compactness of A for the sequence (yy, ), then (y,,) contains a
convergent subsequence (?Jnkj) such that b := lim; Ynu, € A. On the other hand, we also have
lim; Ty, = O Since \aznkj - ynkj] < 1/ny, for all j, we see that @ = b. This implies that

lim; f (xnkj) = f(a) = f(b) = lim; f (ynkj ). This leads to a contradiction since we always have
|f(a:nkj) - f(ynkj)| > & > 0 for all j by the choice of x,, and y,, above. The proof is finished. O

Proposition 2.9 Let f be a continuous function defined on a bounded subset A of R. Then
the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F(z) = f(x)
for all x € A.

Proof: The Part (ii) = (i) follows from Theorem 1.8 and Proposition 2.8 at once.
The proof of Part (i) = (ii) is divided by the following assertions. Assume that f is uniformly
continuous on A.
Claim 1. If (z,,) is a sequence in A and lim x,, exists, then lim f(x,) exists.
It needs to show that (f(x,)) is a Cauchy sequence. Indeed, let ¢ > 0. Then by the uniform
continuity of f on A, thereis § > 0 such that | f(z)—f(y)| < € whenever z,y € A with |[z—y| < J.
Notice that (x,) is a Cauchy sequence since it is convergent. Thus, there is a positive integer
N such that |z, —z,| < d for all m,n > N. This implies that |f(x,,) — f(zn)| < € for all
m,n > N and hence, Claim 1 follows.
Claim 2. If (z,) and (y,) both are convergent sequences in A and limz, = limy,, then
lim f(x,) = lim f(yn).
By Claim 1, L := lim f(z,) and L' = lim f(y,) both exist. For any £ > 0, let § > 0 be found
as in Claim 1. Since limz,, = limy,, there is N € N such that |z, — y,| < 0 for all n > N
and hence, we have |f(z,) — f(yn)| < € for all n > N. Taking n — oo, we see that |[L — L'| <e
for all e > 0. So L = L'. Claim 2 follows.
Recall that an element z € A if and only if there is a sequence (z,,) in A converging to z.
Now for each x € A, we define

F(z):=lim f(z,)

if (z,,) is a sequence in A with limz,, = z. It follows from Claim 1 and Claim 2 that F'is a
well defined function defined on A and F(x) = f(x) for all z € A.

So, it remains to show that F' is continuous. Then F is a continuous extension of f to A as
desired.

Now suppose that F is not continuous at some point z € A. Then there is € > 0 such that for
any § > 0, there is x € A satisfying |z — 2| < § but |F(x) — F(z)| > e. Notice that for any
§ > 0 and if |z — z| < § for some z € A, then we can choose a sequence (z;) in A such that
limz; = x. Therefore, we have |z; — z| < § and |f(x;) — F(2)| > ¢/2 for any ¢ large enough.
Hence, for any ¢ > 0, we can find an element x € A with |z — z| < ¢ but |f(z) — F(2)| > ¢/2.
Now consider § = 1/n for n = 1,2.... This yields a sequence (z,) in A which converges to z
but |f(x,) — F(z)| > /2 for all n. However, we have lim f(z,) = F(z) by the definition of F’



which leads to a contradiction. Thus F is continuous on A.
Finally the uniqueness of such continuous extension is clear.
The proof is finished. O

Example 2.10 By using Proposition 2.9, the function f(z) := sin 1 defined on (0,1] cannot
be continuously extended to the set [0, 1].

3 Lipschitz functions

Definition 3.1 Let A be a non-empty subset of R. A function f: A — R is called a Lipschitz
if there is a constant C' > 0 such that |f(x) — f(y)| < C|z — y| for all x,y € A. In this case.
Furthermore, if we can find such 0 < C < 1, then we call f a contraction.

It is clear that we have the following property.
Proposition 3.2 Fvery Lipschitz function is uniformly continuous on its domain.

Example 3.3 (i) : The sine function f(x) = sinz is a Lipschitz function on R since we
always have |sinz —siny| < |x — y| for all z,y € R.

(ii) : Define a function f on [0,1] by f(z) = xsin(1/z) for € (0,1] and f(0) = 0. Then f is
continuous on [0, 1] and thus f is uniformly continuous on [0, 1]. But notice that f is not
a Lipschitz function. In fact, for any C' > 0, if we consider z,, = L and vy, =

2nm+(m/2) 2nm?
then |f(zyn) — f(yn)| > Clan — yn| if and only if

=4n > C.

2 (2nm + 3)(2n7)
™ 2nm + 5

Therefore, for any C' > 0, there are z,y € [0,1] such that |f(z) — f(y)| > C|z — y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 3.4 Let A be a non-empty closed subset of R. If f : A — A is a contraction,
then there is a fized point of f, that is, there is a point a € A such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C' < 1 such that |f(z) — f(y)| < Clz — y|
for all z,y € A. Fix x; € A. Since f(A) C A, we can inductively define a sequence (z,) in A
by zp4+1 = f(zy) for n = 1,2... Notice that we have

|Tni1 — xn| = |f(2n) — f(2n-1)] < Clzn — 21|

for all n = 2,3... This gives
|[Tn41 — @n| < C g — 24

forn =2,3,.... So, for any n,p =1, 2.., we see that

n+p—1 n+p—1
[Tnip — 0 < Y i — @i < lwg —a| Y O
i=n i=n



Since 0 < C < 1, for any € > 0, there is N such that Z?:f;_l C~! < eforalln > N
and p = 1,2,... Therefore, (z,) is a Cauchy sequence and thus the limit a := lim,, z,, exists.
Since A is closed, we have a € A and hence f is continuous at a. On the other hand, since

Znt1 = f(zp). Therefore, we have a = f(a) by taking n — oo. The proof is finished. O

Remark 3.5 The Proposition 3.4 does not hold if f is not a contraction. For example, if we
consider f(x) = x — 1 for z € R, then it is clear that |f(z) — f(y)| = |z — y| and f has no fixed
point in R.

4 Continuous functions defined on intervals
Recall that a non-empty subset I of R is called an interval if it has one of the following forms.
(i) R.
(ii) (—o0,al or [a,0) or (—o0,a) or (a,00) for some a € R.
(iii) (a,b) or (a,b] or [a,b) or [a,b] for some a,b € R with a < b.

Lemma 4.1 Let I be a non-empty subset of R. Suppose that there are different elements in I.
Then I is an interval if and only if for any a,b € I with a < b, we have [a,b] C I.

Proposition 4.2 (Intermediate Value Theorem): Let I be an interval and let f : I — R
be a continuous function. Suppose that there are a and b in I with f(a) < z < f(b). Then
there is ¢ between a and b such that f(c) = z.

Proof: Notice that if we consider the function x € I — f(x) — z, then we may assume that
z = 0. Also, we may assume that a < b. Put 1 = a and y; = b. Now if f(“Ter) = 0, then the
result is obtained. If f(aTH’) > 0, then we set x9 = a and yy = “TH’. Similarly, if f(“TH’) <0,
then we set xo = “TH’ and yo = b. To repeat the same procedure, if there are xny and yy such
that f( W) = 0, then the result is shown. Otherwise, we can find a decreasing sequence of
closed and bounded intervals [a, b] = [x1,y1] 2 [x2,y2] 2 -+ with lim(y, —z,) = 0 and f(z,) <
0 < f(yn) for all n. Then by the Nested Intervals Theorem, we have (), [zn, yn] = {c} for some

¢ € [z1,y1] = [a,b] C I because I is an interval. Moreover, we have lim, 2, = lim, y, = c.
Then by the continuity of f, we see that f(c) = lim f(z,) = lim f(y,). Since f(z,) <0 < f(yn)
for all n, we have f(c) = 0. The proof is finished. O

Remark 4.3 The assumption of the intervals in the Intermediate Value Theorem is essential.
For example, consider I = [0,1) U (2, 3] and define f: I — R by

K if x€/0,1)
fe) = {a:—l if ze(23).
Then f(0) < 1 < £(3) but 1 ¢ f(I).

Corollary 4.4 Let f;[a,b] — R. Suppose that M = sup{f(z) : = € [a,b]} and m = inf{f(x) :
x € [a,b]}. Then f(la,b]) = [m, M].



Proof: Notice that if m = M, then f is a constant function and hence, the result is clearly
true.

Now suppose that m < M. It is clear that f([a,b]) C [m, M] because m < f(x) < M for all
x € [a,b]. For the converse inclusion, notice that since [a,b] is compact, there are 21 and x5
in [a,b] such that f(x;) = m and f(x2) = M. We may assume that x; < z2. To apply the
Intermediate Value Theorem for the restriction of f on [z1,x3], we have [m, M] C f([z1,x2]) C
f([a,b]). The proof is finished. O

Corollary 4.5 Let I be an interval and let f : I — R be a continuous non-constant function.

Then f(I) is an interval.

Proof: Notice that by Lemma 4.1, it needs to show that for any ¢,d € f(I) with ¢ < d implies
that [c,d] C f(I). Suppose that a,b € I with a < b satisfy f(a) = ¢ and f(b) = d. Notice that
[a,b] C I because I is an interval. If we put M = sup,e(q 4 f(2) and m = inf [, 4 f(2), then
by Corollary 4.4, we have

[e,d] € [m, M] = f(la,b]) € f(I).

The proof is finished. O

Example 4.6 It is impossible to find a continuous surjection from (a,b) onto (¢,d) U (e, f)
where d < e.
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