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1 Eventual and Frequent Behavior of Sequences

Definition 1.1. Let (xn) be a sequence. Let P := {x ∈ R : x satisfies property (P)}. Then

• We say (xn) satisfies property (P) eventually, or for sufficient large n, if there exists N ∈ N
such that xn ∈ P for all n ≥ N

• We say (xn) satisfies property (P) frequently if for all N ∈ N there exists k(N) ≥ N such
that xk(N) ∈ P

Quick Practice. Let (xn) be a sequence. Let P := {x ∈ R : x satisfies property (P)}. Show that

a. (xn) satisfies property (P) eventually if and only if (xn) does not satisfy property (P) for only
finitely many terms

b. (xn) satisfies property (P) frequently if and only if (xn) satisfies (P) for infinitely many terms

c. (xn) satisfies property (P) frequently if and only if there exists a subsequence (yn) of (xn) such
that (yn) satisfies (P) for all terms

d. The negation of (xn) satisfies property (P) eventually is that (xn) does not satisfies (P) frequently.

Example 1.2. Let (xn) be a convergent sequence. Write x := limxn. Suppose x > r. Show that
xn > r for sufficiently large n.

Solution. Recall that limxn = lim inf xn as (xn) is convergent. Therefore, lim inf xn > r. From
Tutorial 3, this shows that xn ≤ r for only finitely many terms (why?). This is equivalent to that
xn > r eventually.
Alternatively, we can prove the assertion using an ε− argument. Note that x > r and so L := x−r >
0. Therefore, there exists N ∈ N such that |xn − x| < L/2. This implies −L/2 + x < xn < L/2 + x.
Note that −L/2 + x = (r + x)/2 > r. Therefore, we have xn > r for all n ≥ N .

Example 1.3. Let (xn) be a sequence such that xn ≥ 0 for all n ∈ N. Define yn := x
1/n
n for all

n ∈ N. Suppose lim sup yn < 1. Then show that limxn = 0.

Proof. Let lim sup yn < r < 1. Then lim sup yn < r < 1, it follows that yn < r for sufficiently large

n (why?). Therefore there exists N ∈ N such that yn < r, which imples x
1/n
n < r ⇐⇒ xn < rn for

all n ≥ N . As a result we have 0 ≤ xn ≤ rn for all n ≥ N . Since r ∈ (0, 1) (why?), it follows that
lim rn = 0. By Squeeze Theorem, we have limxn = 0.

Definition 1.4. Let (xn) be a sequence in R. Let x ∈ R. Then we say x a (sequential) cluster point
of (xn) if for all ε > 0 we have |x− xn| < ε frequently.

Example 1.5. Let (xn) be a sequence and x ∈ R a cluster point of (xn). Show that there exists a
subsequence (yn) such that limxn = x.

Solution. By definition of a cluster point, there exists N(1) ∈ N such that
∣∣x− xN(1)

∣∣ < 1. Note
that x is also a cluster point of the tail sequence (xn)n>N(1). By definition again, there exists

N(2) ∈ N such that
∣∣x− xN(2)

∣∣ < 1/2 where N(2) > N(1). Again, x is a cluster point of the tail

sequence (xn)n>N(2). Inductively for n ≥ 3, there exists N(n) ∈ N such that
∣∣x− xN(n)

∣∣ < 1/n with
N(n) > N(n− 1).
Now we define yn := xN(n). Then (yn) is a subsequence of (xn) as n 7→ N(n) is strictly increasing
by construction. It remains to show that (yn) is our desired convergent subsequence. Note that we
have 0 ≤ |yn − x| ≤ 1/n for all n ∈ N. By Squeeze Theorem, it follows that lim |yn − x| = 0 and so
lim yn = x (why?).

Quick Practice.

1. Let (xn) be a convergent sequence. Show that if limxn < r for r ∈ R, then xn < r eventually.

2. Let (xn) be a bounded sequence. Suppose limxn < r for r ∈ R. Show that xn < r eventually.

3. Let (xn) be a sequence such that xn > 0 for all n ∈ N. Suppose lim sup xn+1

xn
< 1. Show that

limxn = 0

4. Let (xn) be a sequence and x ∈ R. Show that x is a sequential cluster point of (xn) if and only
if it is the limit of some subsequence of (xn).

5. Let ε > 0 and (xn) a sequence. Define An,ε := {y ∈ R : |xn − y| < ε} and A :=
⋂
ε

⋃
n

⋂
k≥nAk,ε.

What is A and the complement of A?
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2 Miscellaneous Examples and Exercises on Subsequences

Example 2.1. Let (xn) be a sequence in R. Suppose every subsequence of (xn) has a further
subsequence that converges to 0. Show that (xn) converges to 0.

Solution. Suppose not. Then there exists ε > 0 such that |xn| ≥ ε frequently. In other words, there
exists a subsequence (yn) of (xn) such that |yn| ≥ ε for all n ∈ N. By assumption, there exists a
further subsequence (zn) of (yn) such that lim zn = 0. However as (zn) is a subsequence, we have
|zn| ≥ ε > 0 for all n ∈ N. By order property of limits lim zn = 0 ≥ ε > 0, which is a contradiction.

Example 2.2 (Showing the Nested Interval Theorem by the B-W Theorem). Let (In := [an, bn])
be a sequence of closed and bounded interval such that In ⊃ In+1 for all n ∈ N. Show that

⋂
In 6= φ.

Solution. Let (xn) be a sequence such that xn ∈ In for all n ∈ N. Then (xn) is a bounded sequence
as xn ∈ I1, which is bounded, for all n ∈ N. It follows from the B-W Theorem that (xn) has a
convergent subsequence (yn := xj(n)). Write x := lim yn. We show that x ∈

⋂
In.

Suppose not. Then x ∈ (
⋂
In)c, that is x ∈

⋃
Icn. Therefore, there exists N ∈ N such that x /∈ IN =

[aN , bN ]. In otherwords, x > bN or x < aN . Suppose x > bN . This means lim yn > bN . Therefore
we have that yn > bN eventually so yn /∈ IN eventually. Since (In) is a nested interval, it means that
yn /∈ Ik for all k ≥ N eventually. However by construction of (yn) we have yn = xj(n) ∈ Ij(n) for all
n ∈ N. Therefore for a large enough M ∈ N (where j(M) ≥ N and yM /∈ Ik for all k ≥ N), we must
have yM = xj(M) ∈ Ij(M) but yM /∈ Ij(M). Hence, contradiction arises. The case for lim yn > aN is
similar. Combining the two cases we have that lim yn ∈

⋂
In and so

⋂
In 6= φ

Example 2.3 (Diagonalization Argument). Let (xn) be a sequence of real numbers. Write A :=
{xn : n ∈ N}. For all m ∈ N, let fm : A→ R be a function. Suppose fm is bounded for all m ∈ N.

a. Show that there exists a subsequence (yn) of (xn) such that (f1(yn)) and (f2(yn)) converges.

b. Fix k ∈ N. Construct a subsequence (yn) of (xn) such that (f1(yn)), · · · (fk(yn)) converges.

c. Show that there exists a subsequence (yn) of (xn) such that (fm(yn)) converges for all m ∈ N.

Solution.

a. Note that (f1(xn)) is a bounded sequence. By B-W Theorem, it has a convergent subsequence

(f1(y
(1)
n )). Note that then (f2(y

(1)
n )) is a bounded sequence (not necessrily converging). By B-W

theorem again, there exists a converging subsequence (f2(y
(2)
n )) of (f2(y

(1)
n )). Note that (f1(y

(2)
n ))

is then a subsequence of (f1(y
(1)
n )), which also converges. Therefore the subsequence (y

(2)
n ) is the

required subsequence of (xn)

b. Repeat the process in (a) k times. Then the subsequence (y
(k)
n ) is the required one.

c. Define yn := y
(n)
n for all n ∈ N using the previous notations. It left as an exercise for the readers

to check that (yn) is a subsequence of (xn) such that limn fm(yn) exists for all m ∈ N.

Quick Practice.

1. Let (xn) be a bounded sequence. Let x ∈ R such that every convergent subsequence of (xn)
converges to x. Show that (xn) converges to x.

2. Let A ⊂ R be a subset. Recall that a point x ∈ R is called an accumulation point of A if for
all ε > 0 there exists a ∈ A where a 6= x such that |a− x| < ε.

(a) Show that x ∈ R is an accumulation point of A if and only if there exists a sequence (an)
in A\{x} such that lim an = x.

(b) Show that if x is an accumulation point of A then for all ε > 0, there exists infinitely
many points a ∈ A\{x} such that |a− x| < ε

(c) Let (xn) be a sequence and A := {xn} be its underlying set. Show that if x is an accumu-
lation point of A then x is a sequential cluster point of (xn) (see Definition 1.4).

(d) Does the converse of part (c) holds for sequences in general?

3. Recall that Q is a dense subset of R.

(a) For all r ∈ R, show that there exists a sequence (qn) of rational numbers converging to r.

(b) Show that there exists a family of uncountably many subsets of Q such that intersections
of any two of them has at most finitely many elements, that is, write {Ai}i∈I the collection
of subsets with an uncountable index set I, then Ai ∩Aj is a finite set for all i 6= j.
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