1 Recall: The Natural Numbers

Theorem 1.1 (Archimedean Property). Let $X = \mathbb{N} \subset \mathbb{R}$ be the set of natural numbers. Then X is not bounded above.

Corollary 1.2 (ϵ - characterization of the Archimedean Property). Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $1/N < \epsilon$. In other words, $\inf\{1/n : n \in \mathbb{N}\} = 0$.

Example 1.3. Let $X := \{1/n^2 : n \in \mathbb{N}\}$. Show that inf X = 0.

Solution. First 0 is a lower bound of X clearly. It remains to show that 0 approximates X by the ϵ -characterization of infimum. Let $\epsilon > 0$. Then by the Archimediean Property, there exists $N \in \mathbb{N}$ such that $1/N < \epsilon$. Since $N \ge 1$ as $N \in \mathbb{N}$, we have $N \le N^2$ (why?). Therefore, it follows that $1/N^2 \le 1/N < \epsilon = 0 + \epsilon$ and so 0 approximates X. It follows that inf X = 0.

Quick Practice. For each of the following subsets X, determine and explain whether $\sup X$ and $\inf X$ exist. If yes, find them.

$$a) X = \mathbb{Q}$$

b)
$$X = \{1/n^3 : n \in \mathbb{N}\}$$

b)
$$X = \{1/n^3 : n \in \mathbb{N}\}\$$
 c) $X = \{(2n+3)/n^3 : n \in \mathbb{N}\}\$

2 Sequences

Definition 2.1 (Sequences). Let $x: \mathbb{N} \to \mathbb{R}$ be a function. Then we call x a sequence of real numbers.

Remark. For a sequence x, we usually denote its image by $x_n := x(n)$ for all $n \in \mathbb{N}$. We would also use (x_n) to denote the sequence (function) x and write "let $x := (x_n)$ be a sequence" if we have to define a sequence in the first place.

Example 2.2.

- a. A constant sequence $x := (x_n)$ is sequence that is a constant function, that is, there exists $c \in \mathbb{R}$ such that $x_n = c$ for all $n \in \mathbb{N}$
- b. A bounded sequence $x := (x_n)$ is a sequence that is also a bounded function, that is, there exists M>0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.
- c. A sequence is recursively defined if terms depend on previous terms. The Fibonacci sequence (f_n) is recursivelyy defined by the relations

$$f_1 = f_2 = 0$$
 $f_n = f_{n-2} + f_{n-1} \text{ for } n \ge 3$

d. The rational number \mathbb{Q} is countably infinite. Therefore, we can write $\mathbb{Q}=(q_n)$ as a sequence by considering any bijection from \mathbb{N} to \mathbb{Q} .

Here comes the most important definition concerning sequences: their limits.

Definition 2.3 (Sequential imits). Let (x_n) be a sequence of real numbers and $x \in \mathbb{R}$. We say that x is a limit of (x_n) if for all $\epsilon > 0$ there exists $N = N(\epsilon) \in \mathbb{N}$ such that for all $n \geq N$, we have

$$|x_n - x| < \epsilon$$

We call (x_n) a convergent sequence if it has a limit.

Remark.

- If a sequence (x_n) converges, then its limit is unique. We denote the limit as $\lim_n x_n$.
- The limit of a sequence is some point that the sequence gets close to eventually.

Example 2.4. Consider the sequence $x := (x_n)$ with $x_n := 1/n$. Show that x converges.

Solution. We can find an explicit limit of x. In fact we claim that $\lim 1/n = 0$. To this end, let $\epsilon > 0$. Then by Archimedean Property, there exists $N \in \mathbb{N}$ such that $1/N < \epsilon$. Now suppose $n \geq N$, we have $|1/n - 0| = 1/n \le 1/N < \epsilon$ and so $\lim 1/n = 0$ by definition.

Quick Practice. For each of the following sequences $x := (x_n)$, find and verifty their limits.

$$a) x_n := \pi$$

b)
$$x_n := 1/n^2$$

c)
$$x_n := 1 - 5/n$$

d)
$$x_n := \frac{n}{n^2 + 1}$$

$$e) \ x_n := \sqrt{n+1} - \sqrt{n}$$

e)
$$x_n := \sqrt{n+1} - \sqrt{n}$$
 f) $x_n := \frac{3n}{2n+9}$

$$g) \ x_n := \frac{n^2 + 1}{4n^2 - n - 1}$$

h)
$$x_n := \frac{4n-7}{2n-3}$$

$$i)$$
 $x_n := n$

Definition 2.5 (Divergent Sequences). Let (x_n) be a sequence. We say it diverges if it is not a convergent sequence. Equivalently, for all $x \in \mathbb{R}$, (x_n) does NOT converge to x.

Remark. To show that (x_n) does not converge to x is to verify the negation of sequential convergence. In other words, it is to show that there exists $\epsilon > 0$ such that for all $k \in \mathbb{N}$ there exists $n_k \geq k$ such that $|x_{n_k} - x| \geq \epsilon$

Example 2.6. Show that the sequence $(x_n := (-1)^n)$ does not converge to ± 1 .

Solution. We first show that x_n does not converge to 1. To this end, we take $\epsilon := 1$. Moreover, we take $n_k := 2k+1 \ge k$ for all $k \in \mathbb{N}$. Then $x_{n_k} = -1$ for all $k \in \mathbb{N}$. Therefore $|x_{n_k-1}| = |-1-1| = 2 \ge 1$ for all $k \in \mathbb{N}$. By definition, x_n does not converge to 1. The case of -1 is left to the readers.

Quick Practice. Consider the sequence (x_n) where $x_n = 0$ when n even and $x_n = 1$ when n is odd.

- a. Show that the sequence does not converge to 0.
- b. Show that the sequence does not converge to any $r \in \mathbb{R}$

3 Exercises

- 1. Let $x := (x_n)$ and $y := (y_n)$ be sequences of real numbers such that $y_n := x_{2n}$
 - (a) Show that if (x_n) converges, then (y_n) converges.
 - (b) Find an example such that the converse does not hold.
- 2. Recall that a subset $A \subset \mathbb{R}$ is *dense* if and only if for all open intervals (a, b) with a < b, we have $A \cap (a, b) \neq \phi$.
 - (a) Show that a subset A is dense if and only if for all $r \in \mathbb{R}$ and $\epsilon > 0$, there exists $q \in A$ such that $|q r| < \epsilon$. This is the ϵ -characterization for dense subsets.
 - (b) Hence, show that a subset A is dense if and only if for all $r \in \mathbb{R}$, there exists a sequence (a_n) where $a_n \in A$ such that $\lim a_n = r$.
- 3. For each of the following sequences $x := (x_n)$, determine if it convergences or not. If it converges, find its limit using definitions; otherwise, make a proof on why it diverges.
 - a) $x_n := (-1)^n / n$

b) $x_n := \cos(n\pi)$

c) $x_n := \sqrt{n}$

- d) $x_n := \sqrt{2}$, corrected to nth decimal place
- 4. We call a sequence $x := (x_n)$ finitely supported if $x_n = 0$ except for finitely many $n \in \mathbb{N}$. Show that x is a convergent sequence.

We would be investigating the algebraic properties of sequences in Q5 - 7.

- 5. Let $s:=\{x:\mathbb{N}\to\mathbb{R}\}$ be the set of all real valued sequences, For $x,y\in s$, define x+y such that (x+y)(n):=x(n)+y(n). For $\alpha\in\mathbb{R}$ and $x\in s$, define $\alpha\cdot x$ such that $(\alpha\cdot x)(n):=\alpha x(n)$ for all $n\in\mathbb{N}$.
 - a) Show that $(s, +, \cdot)$ is a vector space.
 - b) Show that there exists an infinite subset of linearly independent elements in $(s, +, \cdot)$.
- 6. Let $b := \{x : \mathbb{N} \to \mathbb{R} \mid x \text{ is bounded}\}$ be the set of bounded sequences and $c := \{x : \mathbb{N} \to \mathbb{R} \mid x \text{ is convergent}\}$ be the set of convergent sequences.
 - (a) Verify the following (proper) subset inclusions:

$$c \subseteq b \subseteq s$$

where s is the vector space of real sequences defined in Q5.

- (b) Show that b, c are infinite dimensional vector subspaces of s.
- (c) Define $T: c \to \mathbb{R}$ by $Tx := \lim x_n$ where $x := (x_n)$. Show that T is linear.
- 7. For all $r \in \mathbb{R}$, define $c_r := \{x := (x_n) \in c \mid \lim x_n = r\}$. Show that there is a unique $r \in \mathbb{R}$ such that c_r is a vector space and hence a vector subspace of c.