2021 - 2022 MATH2058 Tutorial 1 - The € Arguement, Supremum, Infimum

1 Introduction to the ¢ Argument

Proposition 1.1. Let a,b € R. Then the following are equivalent:
.a<b
it. (There exists L >0) , for all (L >)e > 0, we have a < b+ ¢
iti. (There exists L > 0) , for all (L >)e > 0, we have a < b+ ¢

Remark. This simple observation shows that partial ordering is established as long as it is established
for all numbers close enough to the numbers in concern.

Definition 1.2. Let A C R be a subset. Then we say
e A number u € R is an upper bound of A if a < wu for all a € A.
e A number [ € R is a lower bound of Aifl < a for all a € A.

e An upper bound u of A is called a supremum if it is a lower bound to the set of upper bounds
of A.

e A lower bound [ of A is called an infimum if it is an upper bound to the set of lower bounds
of A.

In fact, whenever a supremum (resp. infimum) exists, it is unique. We denote the supremum (resp.
infimum) of a subset A, regardless of existence, by sup A (resp. inf A).

Theorem 1.3 (e-characterization of supremum). Let A C R be a subset and s € R. Then s =sup A
if and only if

i. s is an upper bound of A

1. For all e > 0, there exists a € A such that s — e < a
115. There exists L > 0 such that for all L > € > 0, there exists a € A such that s — e < a
Theorem 1.4 (e-characterization of infimum). Let A C R be a subset and s € R. Then s = inf A
if and only if

i. s 1s a lower bound of A.

ii. For all € > 0, there exists a € A such that a < s+ €.
i115. There exists L > 0 such that for all L > € > 0, there exists a € A such that a < s+ €.

Remark. The e-characterizations show that supremums (resp. infimums) are upper bounds (resp.
lower bounds) that can approxzimate the set in concern.

Axiom 1.5 (Axiom of Completeness). Let A C R be a non-empty subset that is bounded above, that
is, having an upper bound. Then its supremum sup A ezists.

Example 1.6. Let A :=(0,1). Find the supremum and infimum of A.

Solution. First, it is clear that A is bounded above and so its supremum exists. Next, we claim
sup A = 1. It is clear that 1 is an upper bound. Now we proceed to show that 1 approximates A.
Let 1/2 > € > 0. Take a := 1 —¢/2. Then a € (0,1) and we clearly have 1 — e < a. Therefore, by
the e-characterization of supremum, we have sup A = 1.

Alternatively, we can view the argument this way: as 1 is an upper bound of A, we have sup A <1
by the definition of supremum. On the other hand, 1 approximates A and so 1 < sup A (why?).
Combining the two inequalities, we have sup A = 1.

We leave it to the readers to show that inf A = 0 using similar arguments.

Quick Practice. For each of the following subsets X, determine and explain whether sup X and
inf X exist. If yes, find them.

a) X =(0,1] b) X =10,1] c) X
d) X =U,_,[n,n+1) e) X={la—bl:a,b€(0,1)} f) X

(—1,0) U (1,2]
Z

Remark. For part (e), sup X is called the diameter of (0, 1)
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2 Countable Subsets in R

Theorem 2.1 (Archimedean Property). Let X = N C R be the set of natural numbers. Then X is
not bounded above.

Corollary 2.2 (e- characterization of the Archimedean Property). Let € > 0. Then there exists
N € N such that 1/N < e.

Remark. This is basically saything that inf{l1/n:n € N} =0
Example 2.3. Let X := {1/n?:n € N}. Show that inf X = 0.

Solution. First 0 is a lower bound of X clearly. It remains to show that 0 approximates X by the
e—characterization of infimum. Let € > 0. Then by the Archimediean Property, there exists N € N
such that 1/N < e. Since N > 1 as N € N, we have N < N? (why?). Therefore, it follows that
1/N? <1/N < e=0+ € and so 0 approximates X. It follows that inf X = 0.

Definition 2.4. Let A C R be a subset. We say that A is dense in R if for all a < b € R, we have
AN (a,b) # ¢.

Theorem 2.5 (Density of Q). The set of rational numbers Q is dense in R

Example 2.6. Let X := R\Q be the set of irrational numbers. Show that X is dense in R

Solution. Let a < b € R. It suffices to find = € (a,b) that is irrational. Take ¢ := (a + b)/2. Then
a < ¢ < b. By denseness of rational numbers, there exists g1, q2 € Q such that a < ¢1 < ¢ < g2 <b.
Take = := q1 + (g2 — ¢1)/+v/2. Then it is clear that z is irrational and a < q; < & < ¢o < b. Hence,
(a,b) N X # ¢ and X is dense in R

Quick Practice.

1. For each of the following subsets X, determine and explain whether sup X and inf X exist. If
yes, find them.

o) X=Q b) X ={1/n®:n €N} ¢) X ={(2n+3)/n®:n e N}
d) X ={1/q:q e Q\{0}} e) X={qeQ:¢*<1} f) X={V2—q|:q€Q}

2. Let A C R be a subset. Show that A is a dense subset if and only if for all e > 0 and r € R, there
exists a € A such that |a —r| < e. (This is the € characterization of dense subsets).

3 Exercises

1. Let A C R be a non-empty subset that is bounded below.

a) Show that the subset —A := {—a : a € A} has a supremum.
b) Show that inf A = —sup(—A).

c¢) Show that inf A = —sup(—A) using an e—argument if you have not done so.

2. Let A C R be a non-empty bounded above subset. Suppose u € R is an upper bound such
that u € A.

a) Show that u is the unique upper bound of A that is in A.
b) Show that u = sup A.

(We call such u the maximum of A and denote it by max A)

3. Let A C R be a non-empty finite subset. Show that A has a maximum element, that is, an
upper bound that lies in A.

4. We call ¢ € Q a dyadic fraction if ¢ = k/2™ for some k € Z and n € N. Denote D the set of
dyadic fractions.

a) Show that {2" : n € N} is unbounded.

b) Show that D is dense in R. You may want to revisit the proof of the denseness of Q.

5. Let A C N be an infinite subset. Show that A is not bounded above in R. Is it true if N is
replaced by Q7
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