MATH 2058 - HW 2 - Solutions

1 (P.61-62 Q5cd). Establish the following limits using the definition of limit.
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a. Let € > 0. By Archimedean Property, there exists N € N such that 13/N < e. Now suppose
n > N. Then we have
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We have established the sequential limit by definition.

b. Let € > 0. By Archimedean Property, there exists N € N such that 5/N < e. Now suppose
n > N. Then we have
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We have established the sequential limit by definition.

2 (P.61 - 62 Q9). Let (z,,) be a sequence such that =, > 0 for all n € N. Suppose lim z,, = 0. Show
that lim \/x,, =0

Solution. Let € > 0. Since limx,, = 0, there exists N € N such that |z, | < €2 for all n > N. Note
that for all z,y € R with 2,y > 0, we have x < y if and only if 2% < y? (why?). Now suppose n > N.
By the previous remark, we then have \/z,, < € as \/z,,~ < €2 . Hence, |\/Zn — 0| = \/Z, < € for all
n > N. It follows from definition that lim \/z, = 0

Remark. Sometimes, one may want to find a suitable [V using the Archimedean Property before mak-
ing simplification to the distance term |z, — x|. To do this, we may solve the inequality |z, — 2| < €
using n as the variable. For example, in Q1b, we can find an N directly at the expression (x).
To do this, we have to solve the inequality
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with respect to n, which is equivalent to

which is in turn equivalent to
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if 0 <5 —6e <= ¢ < 5/6. Therefore, to proceed with the Archimedean Property, we have to first
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add the assumption 0 < € < 5/6 so that we can find an N € N such that 1 ¢ < N. We can
€

. ) . . 5 . .
then claim that ———— < e. Furthermore, since the expression ——— is decreasing in terms of
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n (which is not hard to see for this question), we can then claim that as n > N, we have
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As you might see, things would become complicated if we do not want to simplify our inequalities
first before using the Archimedean Property. I recommend always simplifying your inequality first.



