
MATH 2058 - HW 2 - Solutions

1 (P.61-62 Q5cd). Establish the following limits using the definition of limit.
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Solution.

a. Let ε > 0. By Archimedean Property, there exists N ∈ N such that 13/N < ε. Now suppose
n ≥ N . Then we have∣∣∣∣3n+ 1
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We have established the sequential limit by definition.

b. Let ε > 0. By Archimedean Property, there exists N ∈ N such that 5/N < ε. Now suppose
n ≥ N . Then we have∣∣∣∣n2 − 1
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We have established the sequential limit by definition.

2 (P.61 - 62 Q9). Let (xn) be a sequence such that xn ≥ 0 for all n ∈ N. Suppose limxn = 0. Show
that lim

√
xn = 0

Solution. Let ε > 0. Since limxn = 0, there exists N ∈ N such that |xn| ≤ ε2 for all n ≥ N . Note
that for all x, y ∈ R with x, y ≥ 0, we have x ≤ y if and only if x2 ≤ y2 (why?). Now suppose n ≥ N .
By the previous remark, we then have

√
xn ≤ ε as

√
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2 ≤ ε2 . Hence,
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n ≥ N . It follows from definition that lim
√
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Remark. Sometimes, one may want to find a suitable N using the Archimedean Property before mak-
ing simplification to the distance term |xn − x|. To do this, we may solve the inequality |xn − x| < ε
using n as the variable. For example, in Q1b, we can find an N directly at the expression (∗).
To do this, we have to solve the inequality
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if 0 ≤ 5 − 6ε ⇐⇒ ε ≤ 5/6. Therefore, to proceed with the Archimedean Property, we have to first

add the assumption 0 < ε ≤ 5/6 so that we can find an N ∈ N such that
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then claim that
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n (which is not hard to see for this question), we can then claim that as n ≥ N , we have
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As you might see, things would become complicated if we do not want to simplify our inequalities
first before using the Archimedean Property. I recommend always simplifying your inequality first.
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