THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2018) HW9 Solution

1. (P.247 Q22)

To show the uniform convergence of f_n to f, note that $f_n(x) - f(x) = (x + \frac{1}{n}) - x = \frac{1}{n}$, and hence $||f_n - f||_{\mathbb{R}} = \frac{1}{n} \to 0$ as $n \to \infty$. Therefore, by Lemma 8.1.8 of the textbook, f_n converges uniformly to f on \mathbb{R} .

To show f_n^2 does not converge uniformly on \mathbb{R} , by Lemma 8.1.10 of the textbook, it suffices to find some $\epsilon_0 > 0$ such that for all $N \in \mathbb{N}$, there exists $m, n \ge N$ and $x \in \mathbb{R}$ such that

$$\left|f_n^2(x) - f_m^2(x)\right| \ge \epsilon_0$$

Let $\epsilon_0 = 1$, for all $N \in \mathbb{N}$, chooses m = 2N, n = N, x = N, then

$$\begin{split} \left| f_n^2(x) - f_m^2(x) \right| &= \left| (x + \frac{1}{n})^2 - (x + \frac{1}{m})^2 \right| \\ &= \left| (\frac{2}{n} - \frac{2}{m})x + \frac{1}{n^2} - \frac{1}{m^2} \right| \\ &= \left| (\frac{2}{N} - \frac{2}{2N})N + \frac{1}{N^2} - \frac{1}{4N^2} \right| \\ &= 1 + \frac{3}{4N^2} > 1 = \epsilon_0 \end{split}$$

Therefore, f_n^2 does not converge uniformly on \mathbb{R} .

2. (P.247 Q23) Since f_n, g_n converges uniformly to f, g respectively on A, and that f_n, g_n are bounded for all $n \in \mathbb{N}$, there exists $B, C \in \mathbb{R}$ such that $||f||_A \leq B$ and $||g||_A \leq C$ (Why?). To show $f_n g_n$ converges uniformly to fg on A, we use the definition of uniform convergence: Let $0 < \epsilon < 1$ be given, by Lemma 8.1.8, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $||f_n - f||_A < \frac{\epsilon}{2(1+C)}$

and $||g_n - g||_A < \frac{\epsilon}{2B+1}$. In particular, $||g_n||_A \le \epsilon + C < 1 + C$

Then for all $x \in A$, $n \ge N$,

$$\begin{aligned} |f_n g_n(x) - fg(x)| &\leq |f(x)||g(x) - g_n(x)| + |g_n(x)||f(x) - f_n(x)| \\ &< B \cdot \frac{\epsilon}{2B+1} + (1+C) \cdot (\frac{\epsilon}{2(1+C)}) \\ &< \epsilon \end{aligned}$$

Therefore, $f_n g_n$ converges uniformly to fg on A.

Remark: Many students use the boundness of each function of the sequence (f_n) (similarly for (g_n)) to argue that there exists $M \in \mathbb{R}$ (independent of n) such that $||f_n||_A \leq M$ for all $n \in \mathbb{N}$. This is not true in general (consider $f_n(x) \equiv n$ on \mathbb{R}) unless (f_n) converges uniformly to some function on A. One has to use Cauchy criterion to argue the existence of such M.

3. (P.252 Q12) We first show that $f_n(x) = e^{-nx^2}$ converges uniformly to 0 on [1,2]: since $e^{nx^2} \ge nx^2 \ge n$ for all $n \in \mathbb{N}$ and $x \in [1,2]$, $|f_n(x) - 0| = e^{-nx^2} \le \frac{1}{n}$. Therefore, $||f_n||_{[1,2]} \le \frac{1}{n} \to 0$ as $n \to \infty$. Therefore, by Lemma 8.1.8, $f_n(x) = e^{-nx^2}$ converges uniformly to 0 on [1,2].

Therefore, by Theorem 8.2.4, $\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx = \int_{1}^{2} 0 dx = 0.$

4. (P.252 Q20) A reflection followed by a translation of a typical example would do. Let $n \in \mathbb{N}$, let $f_n : [0,1) \to \mathbb{R}$ be defined by $f_n(x) := nx + (n-1)$ if $x \in [1 - \frac{1}{n}, 1)$ and $f_n(x) := 0$ otherwise. It is easy to check that $\{f_n\}$ is decreasing and its pointwise limit is 0 constant function but the convergence is not uniform.