THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW3 Solution

1. (P.179 Q3) We proceed by induction on n:

Base step n = 1: This reduces to usual Leibniz rule (6.13(c))

Inductive step: Suppose for some $N \in \mathbb{N}$, the statement holds for all n < N. When n = N (the variable x is suppressed for simplicity)

$$(fg)^{(N)} = ((fg)')^{(N-1)} = (f'g + fg')^{(N-1)} = (f'g)^{(N-1)} + (fg')^{(N-1)}$$

now by inductive hypothesis for n = N - 1 on f'g and fg' respectively, we have

$$\begin{split} (f'g)^{(N-1)} + (fg')^{(N-1)} &= \sum_{k=0}^{N-1} \binom{N-1}{k} (f')^{(N-1-k)} g^{(k)} + \sum_{k=0}^{N-1} \binom{N-1}{k} f^{(N-1-k)} (g')^{(k)} \\ &= (f^{(N)}g + \sum_{k=1}^{N-1} \binom{N-1}{k} f^{(N-k)} g^{(k)}) + (\sum_{k=1}^{N-1} \binom{N-1}{k-1} f^{(N-k)} (g)^{(k)} + fg^{(N)}) \\ &= f^{(N)}g + \sum_{k=1}^{N-1} (\binom{N-1}{k} + \binom{N-1}{k-1}) f^{(N-k)} g^{(k)} + fg^{(N)} \\ &= f^{(N)}g + \sum_{k=1}^{N-1} \binom{N}{k} f^{(N-k)} g^{(k)} + fg^{(N)} \\ &= \sum_{k=0}^{N} \binom{N}{k} f^{(N-k)} g^{(k)} \end{split}$$

Therefore, the statement holds for n = N. Hence by induction the statement holds for all $n \in \mathbb{N}$.

2. (P.179 Q4) Consider $f(x) = \sqrt{1+x}$ for $x \ge 0$. Then f is twice differentiable with

$$f'(x) = \frac{1}{2\sqrt{1+x}}; f''(x) = -\frac{1}{4(1+x)^{\frac{3}{2}}}$$

and hence for all y > 0, $0 > f''(y) > -\frac{1}{4}$

Now given any x > 0, let I = [0, x] and consider f defined on [0, x]; f, f' are continuous on [0, x] and f'' exists on (0, x). Apply Taylor's theorem (Theorem 6.4.1) with $x_0 = 0$, there exists $c \in (0, x)$ such that

$$f(x) = f(0) + f'(0)x + \frac{f''(c)}{2!}x^2$$

More explicitly, this implies

$$\sqrt{1+x} = 1 + \frac{1}{2}x + \frac{f''(c)}{2}x^2$$

Since c>0 and $x^2>0,\, 0>\frac{f^{\prime\prime}(c)}{2}x^2>-\frac{1}{8}x^2$, and therefore

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 < \sqrt{1+x} < 1 + \frac{1}{2}x$$

- 3. (P.179 Q5) By Q4, substitute x=0.2 and 1, we have the answers. $1.095 < \sqrt{1+0.2} < 1.1, 1.375 < \sqrt{1+1} < 1.5$ Accuracy is asking for the greatest error, (the lowest order error in this case) that is to estimate the greatest magnitude $R_1(x)$, that is $\frac{1^2}{8} = 0.125$ and $\frac{0.2^2}{8} = 0.005$. (Some also define it as the error divided by 2, marks would be given in either definitions.)
- 4. (P.179 Q10) Let $h(x) = \begin{cases} e^{-\frac{1}{x^2}} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$, note that h is differentiable on $\mathbb{R} \setminus \{0\}$ with $h'(x) = \frac{2}{x^3}h(x)$. We proceed by establishing the following claims: h(x)
 - (i) for all $k \in \mathbb{N}$, $\lim_{x \to 0} \frac{h(x)}{x^k} = 0$.
 - (ii) for all $n \in \mathbb{N}$, for all $k \in \mathbb{N}$, $\lim_{x \to 0} \frac{h^{(n)}(x)}{x^k} = 0$.
 - (iii) for all $n \in \mathbb{N}$, n th derivative of h at 0 exists and $h^{(n)}(0) = 0$.

Proof of (i): Induction on k:

Base step k = 1: $\lim_{x \to 0} \frac{h(x)}{x} = \lim_{x \to 0} \frac{\frac{1}{x}}{e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{-\frac{1}{x^2}}{e^{\frac{1}{x^2}} - \frac{2}{x^3}} = \lim_{x \to 0} \frac{x}{2e^{\frac{1}{x^2}}} = 0$

where we have applied L'Hospital's rule in the second equality (careful justifications are left as exercises for readers)

Inductive step: Suppose for some $K \in \mathbb{N}$, the statement holds for all k < K.

When
$$k = K$$
, $\lim_{x \to 0} \frac{h(x)}{x^K} = \lim_{x \to 0} \frac{\frac{1}{x^K}}{e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{-\frac{K}{x^{K+1}}}{e^{\frac{1}{x^2}} \cdot -\frac{2}{x^3}} = \frac{K}{2} \lim_{x \to 0} \frac{h(x)}{x^{K-2}} = 0$

Again, we have applied L'Hospital's rule in the second equality.

Therefore, the statement holds for k = K. Hence by induction the statement holds for all $k \in \mathbb{N}$.

Proof of (ii): Induction on n:

Base step n = 1: for all $k \in \mathbb{N} \lim_{x \to 0} \frac{h'(x)}{x^k} = \lim_{x \to 0} \frac{2h(x)}{x^{3+k}} = 0$ (by (i))

Inductive step: Suppose for some $N \in \mathbb{N}$, the statement holds for all n < N + 1. When n = N + 1, $h^{(N+1)}(x) = (h'(x))^{(N)} = (\frac{2}{x^3}h(x))^{(N)}$ By generalised Leibniz rule (Section 6.4 Q3), we have

$$\left(\frac{2}{x^3}h(x)\right)^{(N)} = \sum_{l=0}^{N} \binom{N}{l} \left(\frac{2}{x^3}\right)^{(N-l)} h(x)^{(l)}$$

for each l, $(\frac{2}{x^3})^{(N-l)} = \frac{n_l}{x^{3+(N-l)}}$ for some $n_l \in \mathbb{Z}$, and hence we have

$$\sum_{l=0}^{N} \binom{N}{l} (\frac{2}{x^3})^{(N-l)} h(x)^{(l)} = \sum_{l=0}^{N} \binom{N}{l} \frac{n_l h(x)^{(l)}}{x^{3+N-l}}$$

Therefore, for all $k \in \mathbb{N}$, $\lim_{x \to 0} \frac{h^{(N+1)}(x)}{x^k} = \lim_{x \to 0} \frac{\sum_{l=0}^{N} \binom{N}{l} \frac{n_l h(x)^{(l)}}{x^{3+N-l}}}{x^k} = \lim_{x \to 0} \sum_{l=0}^{N} \binom{N}{l} \frac{n_l h(x)^{(l)}}{x^{3+N-l+k}} = 0$ by inductive hypothesis.

hypothe

Therefore, the statement holds for n = N + 1. Hence by induction the statement holds for all $n \in \mathbb{N}$.

Proof of (iii): Induction on n:

Base step n = 1: $\lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = 0$ by (i). Hence h'(0) = 0.

Inductive step: Suppose for some $N \in \mathbb{N}$, the statement holds for all n < N + 1. When n = N + 1, $\lim_{x \to 0} \frac{h^{(N)}(x) - h^{(N)}(0)}{x - 0} = \lim_{x \to 0} \frac{h^{(N)}(x)}{x} = 0$ by (ii) with k = 1. Therefore, (N + 1) th derivative of h at 0 exists and $h^{(N+1)}(0) = 0$.

Therefore, the statement holds for n = N + 1. Hence by induction the statement holds for all $n \in \mathbb{N}$.

Now fix $x \neq 0$, $x_0 = 0$ and apply taylor's theorem (Theorem 6.4.1) to h, then for each $n \in \mathbb{N}$, h(x) = $P_n(x) + R_n(x).$

By (iii), $h^{(l)}(0) = 0$ for all $l \in \mathbb{N}$. Therefore, $P_n(x) \equiv 0$, and hence $h(x) = R_n(x)$ for all $n \in \mathbb{N}$.

Since $h(x) \neq 0$, $R_n(x)$ does not converge to 0 as $n \to \infty$.

Remark. The key point of this question is to express $h^{(N+1)}$ in terms of a sum of its lower derivatives with rational functions as coefficients. Many students recognised this, but were not able to formulate this in precise term or providing enough justification for this.