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1. (P.179 Q5)

Following the hint, we consider f(x) = x
1
n − (x − 1)

1
n where x ≥ 1. f is clearly continuous on [1,+∞)

and differentiable on (1,+∞). Therefore, Mean Value Theorem (Theorem 6.2.4) is applicable on every finite
subinterval [1, d] for any d > 1.

For any x > 1, f ′(x) =
1

n
(x

1
n−1 − (x− 1)

1
n−1). Since x > x− 1 > 0 and

1

n
− 1 < 0, x

1
n−1 < (x− 1)

1
n−1

Therefore, f ′(x) < 0 for any x > 1.

Now given a > b > 0, consider d =
a

b
> 1. Applying Mean Value Theorem to f on [1, d], there exists

c ∈ (1, d) such that
f(d)− f(1) = f ′(c)(d− 1)

Since c > 1, the above implies f ′(c) < 0, and hence f(d)− f(1) < 0. Writing out the definitions explicitly, we
have

[(
a

b
)

1
n − (

a

b
− 1)

1
n ]− (1− 0) < 0

a
1
n − (a− b)

1
n < b

1
n

Therefore, a
1
n − b

1
n < (a− b)

1
n .

Remark: Many students tried to argue that f ′(x) < 0 for x ≥ 1, which is not true since f is actually not
differentiable at x = 1. Even if f ′(x) < 0 for all x > 1, one cannot immediately deduce that f is strictly
decreasing on (1,+∞) without proving it (which is actually section 6.2 Q13). Finally, even if f is strictly
decreasing on (1,+∞), it does not imply immediately that f(1) > f(x) for all x > 1, since 1 /∈ (1,+∞). One
has to use Mean Value Theorem to prove the final claim.

2. (P.179 Q7)
For x ≥ 1, letf(x) = lnx− x− 1, f(1) = 0. For x > 1, by MVT, there exists cx ∈ (1, x) such that

f(x)− f(1)

x− 1
= f ′(cx).

Check that for all x > 1, f ′(x) = 1
x − 1 < 0. Hence, we have proved the right one. Similarly, for the left one,

For x ≥ 1, let g(x) = x−1
x − lnx, g(1) = 0. For x > 1, by MVT, there exists qx ∈ (1, x) such that

g(x)− g(1)

x− 1
= g′(qx).

Check that for all x > 1, g′(x) = 1
x2 − 1

x =< 0. Hence, we have also proved the left one.
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3. (P.179 Q14)

The proof is just a direct contradiction of Thm 6.2.12 Darboux’s Theorem. (Intermediate value property
of derivative well-defined on an interval.) If there exists distinct x1 < x2 ∈ I, and w.l.o.g., f(x1) < 0 and
f(x2) > 0. by Thm 6.2.12, there exists c ∈ (x1, x2) ⊂ I such that f ′(c) = 0. Contradiction occurs.

4. (P.179 Q15)

Since f ′ is bounded on I, there exists M ∈ R such that for all w ∈ I, |f ′(w)| ≤M .

To show f satisfies a Lipschitz condition on I, it suffices to show that there exists L ∈ R such that for
all x, y ∈ I, |f(x)− f(y)| ≤ L|x− y|

We choose L = M and claim that the above statement holds true: Given any x, y ∈ I,

Case 1: x = y: then |f(x)− f(y)| = 0 ≤ 0 = L|x− y|

Case 2: x < y: Since I is an interval, [x, y] ⊆ I. Since f is differentiable on I, f is differentiable on
[x, y], and by Theorem 6.1.2 f is continuous on [x, y]; also f is differentiable on (x, y). Therefore, by Mean
Value Theorem (Theorem 6.2.4), there exists c ∈ (x, y) such that

f(y)− f(x)

y − x
= f ′(c)

Hence, |f(y)− f(x)| = |f ′(c)||y − x| ≤M |y − x|.

Case 3: x > y: interchanging the roles of x and y and adopt similar argument as in case 2 (i.e. replac-
ing [x, y] by [y, x], etc.) , we have

|f(x)− f(y)| ≤M |x− y|

Therefore, for all x, y ∈ I, |f(x)− f(y)| ≤ L|x− y|, and hence f satisfies a Lipschitz condition on I.

Remark: Most students overlooked the case x = y. Although the argument is trivial, it is still essential
as this is the only case where Mean Value Theorem is not applicable; also, some students combined case 2
and 3 together by saying “...there exists c between x and y...”. This is ambiguous as it is not clear whether c
could possibly be x or y by saying so (in other words, whether the “between” is inclusive and exclusive). It is
better to split into cases for the sake of clarity.
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