THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW2 Solution

1. (P.179 Q5)

Following the hint, we consider $f(x) = x^{\frac{1}{n}} - (x-1)^{\frac{1}{n}}$ where $x \ge 1$. f is clearly continuous on $[1, +\infty)$ and differentiable on $(1, +\infty)$. Therefore, Mean Value Theorem (Theorem 6.2.4) is applicable on every finite subinterval [1, d] for any $d > 1$.

For any $x > 1$, $f'(x) = \frac{1}{n}(x^{\frac{1}{n}-1} - (x-1)^{\frac{1}{n}-1})$. Since $x > x - 1 > 0$ and $\frac{1}{n} - 1 < 0$, $x^{\frac{1}{n}-1} < (x-1)^{\frac{1}{n}-1}$

Therefore, $f'(x) < 0$ for any $x > 1$.

Now given $a > b > 0$, consider $d = \frac{a}{b}$ $\frac{a}{b} > 1$. Applying Mean Value Theorem to f on [1, d], there exists $c \in (1, d)$ such that

$$
f(d) - f(1) = f'(c)(d - 1)
$$

Since $c > 1$, the above implies $f'(c) < 0$, and hence $f(d) - f(1) < 0$. Writing out the definitions explicitly, we have

$$
\left[\left(\frac{a}{b} \right)^{\frac{1}{n}} - \left(\frac{a}{b} - 1 \right)^{\frac{1}{n}} \right] - (1 - 0) < 0
$$
\n
$$
a^{\frac{1}{n}} - (a - b)^{\frac{1}{n}} < b^{\frac{1}{n}}
$$

Therefore, $a^{\frac{1}{n}} - b^{\frac{1}{n}} < (a - b)^{\frac{1}{n}}$.

Remark: Many students tried to argue that $f'(x) < 0$ for $x \ge 1$, which is not true since f is actually not differentiable at $x = 1$. Even if $f'(x) < 0$ for all $x > 1$, one cannot immediately deduce that f is strictly decreasing on $(1, +\infty)$ without proving it (which is actually section 6.2 Q13). Finally, even if f is strictly decreasing on $(1, +\infty)$, it does not imply immediately that $f(1) > f(x)$ for all $x > 1$, since $1 \notin (1, +\infty)$. One has to use Mean Value Theorem to prove the final claim.

2. (P.179 Q7)

For $x \ge 1$, let $f(x) = \ln x - x - 1$, $f(1) = 0$. For $x > 1$, by MVT, there exists $c_x \in (1, x)$ such that

$$
\frac{f(x) - f(1)}{x - 1} = f'(c_x).
$$

Check that for all $x > 1$, $f'(x) = \frac{1}{x} - 1 < 0$. Hence, we have proved the right one. Similarly, for the left one, For $x \ge 1$, let $g(x) = \frac{x-1}{x} - \ln x$, $g(1) = 0$. For $x > 1$, by MVT, there exists $q_x \in (1, x)$ such that

$$
\frac{g(x) - g(1)}{x - 1} = g'(q_x).
$$

Check that for all $x > 1$, $g'(x) = \frac{1}{x^2} - \frac{1}{x} = 0$. Hence, we have also proved the left one.

3. (P.179 Q14)

The proof is just a direct contradiction of Thm 6.2.12 Darboux's Theorem. (Intermediate value property of derivative well-defined on an interval.) If there exists distinct $x_1 < x_2 \in I$, and w.l.o.g., $f(x_1) < 0$ and $f(x_2) > 0$. by Thm 6.2.12, there exists $c \in (x_1, x_2) \subset I$ such that $f'(c) = 0$. Contradiction occurs.

4. (P.179 Q15)

Since f' is bounded on I, there exists $M \in \mathbb{R}$ such that for all $w \in I$, $|f'(w)| \leq M$.

To show f satisfies a Lipschitz condition on I, it suffices to show that there exists $L \in \mathbb{R}$ such that for all $x, y \in I$, $|f(x) - f(y)| \le L|x - y|$

We choose $L = M$ and claim that the above statement holds true: Given any $x, y \in I$,

Case 1: $x = y$: then $|f(x) - f(y)| = 0 \le 0 = L|x - y|$

Case 2: $x < y$: Since I is an interval, $[x, y] \subseteq I$. Since f is differentiable on I, f is differentiable on $[x, y]$, and by Theorem 6.1.2 f is continuous on $[x, y]$; also f is differentiable on (x, y) . Therefore, by Mean Value Theorem (Theorem 6.2.4), there exists $c \in (x, y)$ such that

$$
\frac{f(y) - f(x)}{y - x} = f'(c)
$$

Hence, $|f(y) - f(x)| = |f'(c)||y - x| \le M|y - x|$.

Case 3: $x > y$: interchanging the roles of x and y and adopt similar argument as in case 2 (i.e. replacing $[x, y]$ by $[y, x]$, etc.), we have

$$
|f(x) - f(y)| \le M|x - y|
$$

Therefore, for all $x, y \in I$, $|f(x) - f(y)| \le L|x - y|$, and hence f satisfies a Lipschitz condition on I.

Remark: Most students overlooked the case $x = y$. Although the argument is trivial, it is still essential as this is the only case where Mean Value Theorem is not applicable; also, some students combined case 2 and 3 together by saying "...there exists c between x and y...". This is ambiguous as it is not clear whether c could possibly be x or y by saying so (in other words, whether the "between" is inclusive and exclusive). It is better to split into cases for the sake of clarity.