MATH 5061 Riemannian Geometry

Solution to Problem Set 6

Problem 1

We will show R? is geodesically complete w.r.t g = %(dﬁ +dy?). That is, any
geodesic Yo(t) : (—¢,e) = R2 can be extended infinity at both side.

First, we note y(t) = (0,t) is a geodesic. Indeed, for any new curve c(t) :
[0,1] — R?2 jointing (0, a), (0,b) with , we have
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So by the minimizing properties of geodesics, we know «(t) is indeed a

geodesic.
Moreover, vy can be extended to infinity at both side by noting
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Now, we can try to convert any other geodesics to this standard y-axis.

Note the linear fractional transformation z — % with a,b,¢,d € R, ad —

bc > 0 is a isometry of Ri. Indeed, suppose g = mdzd? and w = Zj_tdb, then
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Hence, for any geodesic 7y above, we can use the isometric transformation
o(z) = %{W to get 4 := ¢ 0 g is a geodesic such that ¢ o y(0) = (0,1).
Without loss of generality, we assume ~q is parametric by arc length.
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Now let’s consider the isometric transformation (z) = {% for a € R

decided later on. Clearly (i) = i, hence 1 o 59(0) = (0,1). Now let’s calculate
the differential of ¢ at 2o := 4 = (0,1) and we can get
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So di)., acts on T, R like the rotation. If 5((0) # (0,1), we can always

find @ € R such that %;Z: = (3,(0))"" as a complex number by solving a simple

equation. Hence the geodesic 7 defined by v o 4y will pass through (0,1) and
~7'(0) = (0,1). By the uniqueness of geodesic we know 7 will coincide with ~y
after reparameterization. Hence 7 and vy can be extended to infinity at both
side.

So by Hopf-Rinow theorem, we know Ri is complete.

Problem 2
Let v : [0,]] — (M™, g) be the minimizing geodesic jointing p, ¢ € M parametrized
by arc length where I = dist(p, ¢). We will prove ! < [y := max {82”, \/ 2(";1)772}

by contradiction.

Suppose I > Iy, we will fix a parallel orthonormal basis {e; (¢), -+ ,en—1(¢),7'(¢)}
along 7.

We define V;(t) := (sin(5t))e;(t), so V;(0) = V;(I) = 0. We can calculate the
second variation of energy to get
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After taking sum over ¢ = 1,--- ,n — 1, we have
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This E/(0) < 0 for some ¢, which contradicts v being minimizing.
Hence by Hopf-Rinow theorem, we know M is compact since it has finite
diameter.

Problem 3

If K <0, then exp, : T,M — M is a covering map by Cartan-Hadamard
Theorem. Let expj(g) be the metric on T),M to make exp,, be a local isometry.

For any path c jointing p, g, we can get a lifting path ¢ inside T}, M jointing
0 and some ¢ € exp, 1(g). Note that there exists a unique geodesic in T, M
jointing 0, § giving by 4(t) = tqd since all the geodesics starting form 0 is the
radical rays.

So exp,,(7) will give a geodesic jointing p,q which is homotopic to c. Note
for any curves homotopic to ¢ and jointing p, ¢ can be lifted to a curve jointing
0, q, we know if there is another geodesic jointing p, ¢ will give another lifting
geodesic jointing 0, ¢, hence it should coincide with 4. Hence the uniqueness of
geodesic jointing p, ¢ has be proved.



Problem 4

Let M be the even dimensional complete manifold with constant positive sec-
tional curvature. We know M is compact by Bonnet-Myers theorem.

By Synge Theorem, we know if M is orientable, then M is simply con-
nected. So by classification of spaces of constant sectional curvature, we know
M isometry to the standard sphere S*”.

If M is non-orientable, we consider M, the orientation covering space of M.
Now by above theorem, we know M isometric to S2*. So M will be a quotient
space of S?" under a isometric action ¢ : S?® — §?" that ¢ o ¢ = Idg2n and ¢
reverses the orientation on S?”. We want to show ¢ is an antipodal map.

Indeed, we know ¢ € O(2n+1) by standard argument. (see Ex. 2 in Problem
Set 3) Let A be the matrix form of . Note A% = I, .1, we know the eigenvalues
of A can only be 1 or —1. Since the action ¢ is free (has no fix point), A cannot
take 1 to be a eigenvalue. So A = —Is,41 and hence p(x) = —z, which is an
antipodal map.

Hence M will isometric to the standard RP?" with the canonical round
metric.

Problem 5
(a). We can extend h to the action on C? just by

27, 27T,
h(z1,22) = (e a'z1,e 4 122).

The standard metric on C? is given by g = |d2; |2+ |d22|2. Hence the pullback

metric under h is given by
h*g = ‘e%”dzlr + ‘e%id@r = |dz1)? + |dzo|?.

Hence h and so h* are isometries of C2. After restriction to S?, we know
G = {id,h,--- ,h? 1} is a group of isometries of S3.

Note that h* acts on S® is free for k = 1,--- , ¢ — 1 since g, r are relatively

prime. So the quotient space S?/G is a smooth manifold. (G is a discrete group
acting smoothly, freely, and properly on S?. Properly is easy to see since S? is
compact.)
(b). For any y € S*/G, we can find a small neighborhood y € V,, C S3/G and
z € U, C S® such that z € 7~ !(y) and 7 is a diffeomorphism between U,, V,
by the properties of covering map. Now we can define the Riemannian metric
in V, by (77!)" gss where ggs is the standard metric on S°.

Now we need to check this is well-defined metric on V,,. For another point
7 € S? with 7(%) = y, we know there is k € Z such that h*(x) = . So h¥(U,)
is a neighborhood of # such that 7 is a diffeomorphism between h*(U.,),V,.
Now (W_l)*|hk(UI)gSS will given another definition of metric. But we note
(7= 1)*(h¥)*ggs = (m~1)*ggs since h is an isometry, we know they give the same
definition of metric.

Hence, we have a well-defined metric g, on V,,. Moreover, we can see the re-
lation 7*g, = gss ‘ﬂ-—l(vy). Hence gy, , g4, Will agree with each other for different
y; and neighborhood on their common area. So we can form a global metric g
on S?/G such that 7*g = ggs and moreover, 7 will be a local isometry.



Now, for any geodesic v in S* /G, we can consider its lifting 5. Clearly 7 will
be a geodesic arc in S? jointing p and ¢ for some p,q € S®. Note the geodesic
in S? is just a part of great circles, so we can extend 7 to be a closed geodesic.
Hence the geodesic 7 o 4 will extend « and become a closed geodesic in S?/G.

Now let’s consider the curves c(t) = (e',0) € S3. It is a geodesic since
it just a big circle on S®. Moreover, h* o ¢ will be the same geodesic upto
reparameterization. This actually shows G acts on S! := {(e®,0) : t € R} freely
and properly. So the after taking quotient, we can get S' covering a closed
geodesic in S*/G precisely ¢ times. Hence the quotient of ¢ will have length 27“
if we don’t count multiplicity.

On the other hand, for any closed geodesic y(¢) : [0,1] — S?/G, we can lift to
S3 to get a geodesic arc 7 jointing p, h¥(p) for some 0 < k < ¢ — 1. By the local
isometry, we know 7,5'(0) = m.7'(1) = 9/(0). So h¥5'(0) = 4/(1). This mean
h¥ o4 will be a extension of 7. Let c(t) be the great circle that 4 lying. If k # 0,
we actually know h will fix the great circle ¢(t) since k, ¢ are coprime. Same
reason above shows the length of v will be 2% if we do not count multiplicity.

So if we consider the geodesic ¢(t) = (cost,0,0,sint). This time h will map
c(t) to another geodesic on S*. At least we note h*(c(0)) will be different ¢
points for k= 0,--- ,q — 1, so h* o ¢ will be ¢ different geodesics. By above we
know 7o ¢(t) cannot have length less than 2. So we know length of 7o ¢(t) has
length 27.



