
MATH 5061 Riemannian Geometry

Solution to Problem Set 5

Problem 1
(a). Let Bδ(p) be a small ball centered at p such that for any s1, s2 ∈ Bδ(p),
there is a unique geodesic γ jointing s1, s2 such that ρ(s1, s2) = Length of γ.
We call this ball as the totally normal ball at p. Let Sδ(p) be the boundary of
Bδ(p). Note that Sδ(p) is a compact set, we can find some s ∈ Sδ(p) such that
ρ(s, q) attains a minimum on Sδ(p). So we can find a minimizing geodesic γ(t)
with γ(0) = p, γ(δ) = s and ‖γ′(0)‖ = 1. By the definition of exponential map,
we have expp(δv) = s where v = γ′(0) ∈ TpM . Let l = ρ(p, q), we are going to
show expp(lv) = q. Since expp(tv) defined for all t ∈ R, we actually can extend
the definition of γ(t) for t ∈ R by γ(t) = expp(tv).

We consider the following equation.

ρ(γ(t), q) = l − t (1)

Let A = {t ∈ (0, l] : (??) holds for t}. Clearly A 6= ∅ since δ ∈ A (Triangle
inequality =⇒ ρ(s, q) ≥ l−δ. If ρ(s, q) = l0 > l−δ, then any piecewise smooth
curve jointing p, q will ≥ l0 + δ since they will pass through Sδ(p).)

Note that A is closed in (0, l] by the continuous of distance. So let’s show
if t0 ∈ A and t0 6= l, then we can find δ′ > 0 such that t0 + δ′ ∈ A. Still we
choose a totally normal ball Bδ′(γ(t0)) such that p, q /∈ Bδ′(γ(t0)). So we know
δ′ ≤ ρ(γ(t0), q) = l−t0 =⇒ t0+δ

′ ≤ l. Again, we can find some s′ ∈ Sδ′(γ(t0))
such that ρ(s, q) attains a minimum on Sδ′(γ(t0)). We claim s′ = γ(t0 + δ′).
If not, we note ρ(s′, γ(t0 − δ′)) < ρ(s′, γ(t0)) + ρ(γ(t0), γ(t0 − δ′)) = 2δ′ by the
definition of totally normal ball. Hence ρ(s′, p) < t0 + δ′. Again by triangle
inequality, ρ(q, s′) ≥ l − ρ(x′, p) > l − t0 − δ′. Since any curves jointing γ(t0), q
will pass through Sδ′(γ(t0)), we actually know ρ(q, γ(t0)) ≥ ρ(x′, q)+δ′ > l− t0,
a contradiction with t0 ∈ A. So we should have x′ = γ(t0+ δ

′). Still by triangle
inequality ρ(γ(t0 + δ′), p) ≥ l − t0 − δ′ but ρ(γ(t0 + δ′), p) > l − t0 − δ′ cannot
hold by the same reason. Hence ρ(γ(t0 + δ′), q) = l − t0 − δ′ =⇒ t0 + δ′ ∈ A.

The above steps show supA ∈ A by the closeness and moreover supA = l.
Hence l ∈ A and γ(l) = q. The γ is the geodesic jointing p, q realized the
distance ρ(p, q).

To prove (M,ρ) is complete, note for any Cauchy sequence (pi), we know
ρ(pi, p) is bounded by Triangle inequality. Suppose ρ(pi, p) < M for all i, we
know pi in the image of BM (p) under the map expp. Note BM (p) is compact,
so does the set expp(BM (p)). Hence we can find a convergent subsequence of
(pi) and indeed the whole sequence will have the same limit since it is Cauchy.
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(b). Let’s suppose expp is not defined on the whole TpM . That means there
is a geodesic γ(t) with γ(0) = p is not defined for some t. WLOG, we assume
‖γ′(0)‖ = 1. By the existence of geodesic, we know there is a largest open
interval (−s0, s1) such that γ(t) is well-defined. Let ti ∈ (−s0, s1) such that
ti → s1. Note ρ(γ(ti), γ(tj)) ≤ |ti − tj |, γ(ti) is Cauchy and we can find q ∈M
such that γ(ti)→ q.

Now let Bδ(q) be a totally normal ball at q. We can find N large such that
pi ∈ B δ

2
(q) and |ti − s1| < δ

2 for all i > N . Note that any two points in Bδ(p)
can be joined by a minimizing geodesic, we know the exponential map exppi
defined for all ‖v‖ ≤ δ

2 . Let’s consider two points pi, pj with N < i < j and
they’re joined by a minimizing geodesic γ(t), t ∈ [ti, tj ]. But note exptj (tγ

′(tj))

exists for t ∈ [− δ2 ,
δ
2 ], we know γ(t) is well-defined when t ∈ [tj , tj +

δ2
2 ]. Note

tj +
δ
2 > s1, so it contradicts with the choice of γ. Hence expp is defined on the

whole TpM .

Problem 2
Suppose γ(t) defined on [0, T ] with ‖γ′(0)‖ = 1. Let γ̃(s) : (−ε, ε) → M be
the geodesic starting from γ(0) with initial velocity V (0). So we consider the
variation of γ defined by

f(t, s) = expγ̃(s)(tW (s))

whereW (s) be the vector field along γ̃ withW (0) = γ′(0) and DW
ds (0) = DV

dt (0).
Clearly f(t, 0) = expγ(0)(tγ

′(0)) = γ(t), so f is indeed a variation of γ.
Note that the variation of geodesic will give the Jacobi field. That is, if we

define Ṽ (t) = ∂f
∂s (t, 0), the vector field along γ, then note D

dt
∂f
∂t = 0, we have

0 =
D

ds

D

dt

∂f

∂t
=
D

dt

D

ds

∂f

∂t
−R(∂f

∂s
,
∂f

∂t
)
∂f

∂t

=
D

dt

D

dt

∂f

∂s
+R(

∂f

∂t
,
∂f

∂s
)
∂f

∂t
= ∇γ′∇γ′ Ṽ +R(γ′, Ṽ )γ′

which shows Ṽ is indeed a Jacobi field.
Note that V (0) = Ṽ (0) = ∂f

∂s (0, 0) and

∇γ′(0)Ṽ (0) =
D

ds

∂f

∂t
(0, 0) =

D

ds
W (0) =

DV

dt
(0) = ∇γ′(0)V (0)

Hence V = Ṽ along γ by the uniqueness of the ODE solutions.
So V arises as the variation of the geodesic.

Problem 3
(a).

" =⇒ " Suppose X is a Killing vector field. Then

d
dt
|t=0ϕ

∗
t g = LXg = 0

where ϕt generated by X by the definition of Lie derivative of tensor. Hence

d
dt
|t=t0ϕ∗t g =

d
dt
|t=0ϕ

∗
t0 ◦ ϕ

∗
t g = ϕ∗t0

(
d
dt
|t=0ϕ

∗
t g

)
= ϕ∗t0(LXg) = 0
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by the properties of flow. So ϕ∗t g = g.
"⇐= " Suppose ϕ∗t g = g for all t, then

LXg =
d
dt
|t=0ϕ

∗
t g =

d
dt
|t=0g = 0

(b). Let ϕt be the flow generated by X. So ϕt will be the isometries of M .
Hence for any geodesic γ(s), the variation of γ defined by γt(s) = ϕt(γ(s)) is
geodesic for every t ∈ R. Hence the vector field V = ∂γt

∂t = ∂
∂tϕt = X along

γ(s) is a Jacobi field.
(c). Let A = {p ∈ M : X,∇YX vanished at p for all Y (p) ∈ TpM}. Clearly
A 6= ∅ is closed. We show A is open, too. For any p ∈ M , we choose a small
ball Bδ(p) that for every point in q, there is a unique minimizing geodesic γp,q
in Bδ(p) jointing p, q. Note that X is a Jacobi field along γp,q that X,∇γ′

p,q(0)

vanish at p. But by the uniqueness of Jacobi field when given V (0),∇γ′(0)V (0),
we know X should be the zero vector field. Hence X will be zero in the whole
ball Bδ(p). So Bδ(p) ⊂ A.

Since M is connect and A is open and closed at the same time, we know
A =M .

Problem 4
Consider the projective space RPn when n is odd. It is a quotient of Sn under
antipodal map ϕ. Since ϕ is orientation preserving when n is odd, we know RPn
is orientable and moreover RPn has positive sectional curvature by the properties
of covering map. Hence Synge theorem does not hold in odd dimensions.
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