Substitution Theorem

Theorem (c.f. Theorem 2.24 of Lecture Note). Let $f \in \mathcal{R}[c, d]$ and let $\varphi : [a, b] \to [c, d]$ be a strictly increasing \mathcal{C}^1 function with $\varphi(a) = c$ and $\varphi(b) = d$. Then $f \circ \varphi \in \mathcal{R}[a, b]$ and

$$\int_{a}^{b} f(\varphi(x))\varphi'(x)dx = \int_{c}^{d} f(x)dx.$$

Remark. The assumption that φ being strictly increasing is restrictive. It can be relaxed but the proof will become complicated. However, it is essential that φ is C^1 . i.e., φ is differentiable with a continuous derivative.

The Improper Integral

Definition. Let $-\infty < a < b \le \infty$ and f be a function defined on [a, b). Suppose $f \in \mathcal{R}[a, c]$ for all $c \in (a, b)$. The *improper integral* of f over [a, b) is defined by

$$\int_{a}^{b} f(x)dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx,$$

provided that the limit exist. In this case, the improper integral is said to be *convergent*.

Remark. Similarly, we can define the improper integrals for functions defined on (a, b], where $-\infty \le a < b < \infty$.

Definition. Let $-\infty \leq a < c < b \leq \infty$ and f be a function defined on (a, b). The *improper integral* of f over (a, b) is defined by

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

provided that both improper integrals on the right-hand-side converges.

Theorem. Let f be a function defined on $[a, \infty)$. Suppose $f \in \mathcal{R}[a, c]$ for all $c \in (a, \infty)$. The improper integral of f over $[a, \infty)$ is convergent if and only if for all $\varepsilon > 0$, there exists M > a such that whenever $A_2 > A_1 > M$,

$$\left|\int_{A_1}^{A_2} f(x) dx\right| < \varepsilon.$$

Theorem. Let f be a function defined on [a, b). Suppose $f \in \mathcal{R}[a, c]$ for all $c \in (a, b)$. The improper integral of f over [a, b) is convergent if and only if for all $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $A_1, A_2 \in [a, b)$ and $b - \delta < A_1 < A_2 < b$,

$$\left|\int_{A_1}^{A_2} f(x) dx\right| < \varepsilon.$$

Remark. We have similar characterisations for the convergence of improper integrals over $(-\infty, b]$ and (a, b].

Prepared by Ernest Fan

Example 1 (2016-17 Final Q2). Let $f:[1,\infty)\to\mathbb{R}$ be a function defined by

$$f(x) = \frac{\sin x}{x}.$$

(i) Show that the improper integral $\int_{1}^{\infty} f(x) dx$ is convergent.

(ii) Show that the improper integral $\int_{1}^{\infty} |f(x)| dx$ is divergent.

Solution. This shows that $f \in \mathcal{R}[a, b] \implies |f| \in \mathcal{R}[a, b]$ doesn't hold for improper integrals.

(i) Note that from the Integration by Parts,

$$\int_{1}^{T} f(x)dx = \int_{1}^{T} \frac{\sin x}{x} dx = \left[-\frac{\cos x}{x}\right]_{1}^{T} - \int_{1}^{T} \frac{\cos x}{x^{2}} dx, \quad \forall T > 1.$$

Hence it suffices to show that the improper integral $\int_{1}^{\infty} \frac{\cos x}{x^2} dx$ is convergent. Note that whenever $A_2 > A_1 > 1$, we have

$$\left| \int_{A_1}^{A_2} \frac{\cos x}{x^2} dx \right| \le \int_{A_1}^{A_2} \frac{|\cos x|}{x^2} dx \le \int_{A_1}^{A_2} \frac{1}{x^2} dx = \frac{1}{A_1} - \frac{1}{A_2} \le \frac{1}{A_1}.$$

For any $\varepsilon > 0$, choose M > 1 such that $1/M < \varepsilon$. Then whenever $A_2 > A_1 > M$,

$$\left| \int_{A_1}^{A_2} \frac{\cos x}{x^2} dx \right| \le \frac{1}{A_1} < \frac{1}{M} < \varepsilon.$$

It follows by the above characterisation theorem that the improper integral converges.

(ii) Suppose on a contrary that the improper integral is convergent. Since $|f| \ge 0$,

$$\int_{1}^{\infty} |f(x)| dx \ge \int_{\pi}^{(N+1)\pi} \frac{|\sin x|}{x} dx = \sum_{k=1}^{N} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} dx, \quad \forall N \in \mathbb{N}.$$

For each $k \in \mathbb{N}$, we can substitute $x = t + k\pi$, then

$$\int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} dx = \int_0^{\pi} \frac{|\sin(t+k\pi)|}{t+k\pi} dt = \int_0^{\pi} \frac{\sin t}{t+k\pi} dt \ge \frac{1}{(k+1)\pi} \int_0^{\pi} \sin t dt.$$

Note that $\int_0^{\infty} \sin t dt = 2$, we have

$$\int_{1}^{\infty} |f(x)| dx \ge \sum_{k=1}^{N} \frac{2}{(k+1)\pi} = \frac{2}{\pi} \sum_{k=1}^{N} \frac{1}{k+1}, \quad \forall N \in \mathbb{N}.$$

This is a contradiction because the harmonic series diverges to ∞ . It follows that the improper integral is divergent.

Prepared by Ernest Fan