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Fundamental Theorem of Calculus

The most important theorem in calculus is stated below. It relates the concept of differen-
tiation and the concept of integration. Let’s first consider the following definitions:

Definition. Let f be Riemann integrable over [a, b].

• A differentiable function F is called an anti-derivative of f if

F ′(x) = f(x), ∀x ∈ [a, b].

• The indefinite integral of f with basepoint c ∈ [a, b] is defined by

F (x) =

∫ x

c

f(t)dt.

Proposition. Suppose F1 and F2 are anti-derivatives of f ∈ R[a, b]. Then there exists a
constant c ∈ R such that F1(x) = F2(x) + c for all x ∈ [a, b].

Proof. Consider the function F (x) = F1(x)− F2(x). Note that

F ′(x) = F ′1(x)− F ′2(x) = f(x)− f(x) = 0, ∀x ∈ [a, b].

It suffices to show that F (x) = F (a) for all x ∈ [a, b]. In this case, we can take c = F (a).

• If x = a, it is obvious.

• If x ∈ (a, b], note that F is continuous on [a, x] and differentiable on (a, x). By the
Mean Value Theorem, there exists ξ ∈ (a, x) such that

F (x)− F (a) = F ′(ξ)(x− a) = 0.

This implies that F (x) = F (a) for all x ∈ [a, b]. The result follows.

Remark. Any two indefinite integrals with different basepoints also differ by a constant.

Fundamental Theorem of Calculus (c.f. Theorem 2.19 of Lecture Note). Let f ∈ R[a, b].

(a) If F is an anti-derivative of f , then∫ b

a

f(x)dx = F (b)− F (a).

(b) Let F be an indefinite integral of f . Then F is (Lipschitz) continuous on [a, b]. More-
over, if f is continuous at x ∈ [a, b], then F is differentiable at x and F ′(x) = f(x).

Remark. In particular, any indefinite integral of a continuous function is its anti-derivative.
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The Fundamental Theorem of Calculus helps us evaluate integrals. If an anti-derivative
of the integrand is known, we can easily compute the integral.

Example 1. Evaluate

∫ π

0

cosxdx.

Solution. Let f(x) = cos x and F (x) = sin x. Note that F ′(x) = f(x) for all x. Hence F is
an anti-derivative of f . It follows from the Fundamental Theorem of Calculus that∫ π

0

cosxdx =

∫ π

0

f(x)dx = F (π)− F (0) = sin π − sin 0 = 0.

Example 2. Observe the following application of the Fundamental Theorem of Calcu-
lus. Let f(x) = 1/x2 and F (x) = −1/x. Note that F ′(x) = f(x). Hence∫ 1

−1

1

x2
dx =

∫ 1

−1
f(x)dx = F (1)− F (−1) = −1− 1 = −2.

This argument is not correct. In fact, f is not Riemann integrable over [−1, 1]. We cannot
apply the Fundamental Theorem of Calculus to f .

Example 3. Let f : R→ R be a continuous function and c > 0. Define g : R→ R by

g(x) =

∫ x+c

x−c
f(t)dt.

Show that g is differentiable on R and find g′(x).

Solution. Since f is continuous, f has an anti-derivative F : R→ R. Note that

g(x) =

∫ x+c

x−c
f(t)dt = F (x+ c)− F (x− c), ∀x ∈ R .

It follows that g(x) is differentiable on R with

g′(x) = F ′(x+ c)− F ′(x− c) = f(x+ c)− f(x− c).

Example 4. Let f : [0, 1]→ R be a continuous function. Suppose f satisfies∫ x

0

f(t)dt =

∫ 1

x

f(t)dt, ∀x ∈ [0, 1].

Show that f(x) = 0 for all x ∈ [0, 1].

Solution. Since f is continuous, f has an anti-derivative F : [0, 1] → R. Apply the Fun-
damental Theorem of Calculus to the assumption,

F (x)− F (0) = F (1)− F (x) =⇒ F (x) =
F (0) + F (1)

2
, ∀x ∈ [0, 1]

This implies that F is a constant function. Hence f(x) = F ′(x) = 0 for all x ∈ [0, 1].
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Riemann Sum

The construction of the Riemann integral from the textbook is different from the Lecture
Note. Luckily, they are equivalent.

Theorem (c.f. Theorem 2.23 of Lecture Note). Let f be a bounded function defined on [a, b].
Then f ∈ R[a, b] if and only if there exists a number L ∈ R such that for every ε > 0, there
exists δ > 0 such that whenever P = {x0, x1, ..., xn} is a partition of [a, b] with ‖P‖ < δ,∣∣∣∣∣

n∑
i=1

f(ξi)∆xi − L

∣∣∣∣∣ < ε.

Here, ξi ∈ [xi−1, xi] for all i = 1, 2, ..., n. In this case, L =

∫ b

a

f(x)dx.

Remark. The sum above is called the Riemann sum of f with respect to the tagged
partition P with ξi ∈ [xi−1, xi].

Although this theorem is not useful to determine the integrability of bounded functions, the
converse direction is useful to calculate limit of sums in special forms.

Example 5. Evaluate lim
n→∞

n∑
k=1

n

n2 + k2
.

Solution. Let’s show that the limit is π/4 in a formal way. First notice that for any n ∈ N,
n∑
k=1

n

n2 + k2
=

n∑
k=1

n

n2 + k2
· 1/n2

1/n2
=

n∑
k=1

1

1 + (k/n)2
· 1

n
.

Consider the function f(x) = 1/(1 +x2). Then the above sum is the Riemann sum of f with
respect to the tagged partition Pn of [0, 1] given by

Pn =

{
0,

1

n
,

2

n
, ...,

n− 1

n
, 1

}
and ξk =

k

n
∈
[
k − 1

n
,
k

n

]
.

Hence the limit above is actually given by the integral of f over [0, 1]. Notice that f has an
anti-derivative F (x) = arctan x. By the Fundamental Theorem of Calculus,∫ 1

0

f(x)dx = F (1)− F (0) = arctan 1− arctan 0 =
π

4
.

To show that the limit is π/4, let ε > 0. By the theorem above, there exists δ > 0 such that
whenever P = {x0, x1, ..., xm} is a partition of [0, 1] with ‖P‖ < δ,∣∣∣∣∣

m∑
i=1

f(ξi)∆xi −
π

4

∣∣∣∣∣ < ε,

where ξi ∈ [xi−1, xi] for all i = 1, 2, ...,m. Now choose N ∈ N so that 1/N < δ. Whenever
n ≥ N , consider the partition Pn and ξi defined as above. Then ‖Pn‖ = 1/n < δ. Hence∣∣∣∣∣

n∑
k=1

n

n2 + k2
− π

4

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

f(ξk)∆xk −
π

4

∣∣∣∣∣ < ε.
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We usually don’t need to present the evaluation of Riemann sums as rigorous as above.

Example 6. Evaluate

(a) lim
n→∞

1

n

(
sin

π

n
+ sin

2π

n
+ · · ·+ sin π

)
(b) lim

n→∞

(
n+ 1

n2
+
n+ 2

n2
+ · · ·+ 2n

n2

)
Solution. We just need to transform the sum into the Riemann sum of a suitable function
and then evaluate the desired integral.

(a) Note that for each n ∈ N,

1

n

(
sin

π

n
+ sin

2π

n
+ · · ·+ sin π

)
=

1

n

n∑
k=1

sin
kπ

n
=

n∑
k=1

sin

(
k

n
π

)
· 1

n
.

Hence the sum is the Riemann sum of the function sin(πx). Therefore

lim
n→∞

1

n

(
sin

π

n
+ sin

2π

n
+ · · ·+ sin π

)
=

∫ 1

0

sin(πx)dx = − 1

π
cos(πx)

∣∣∣∣∣
x=1

x=0

=
2

π
.

(b) Note that for each n ∈ N,

n+ 1

n2
+
n+ 2

n2
+ · · ·+ 2n

n2
=

n∑
k=1

n+ k

n2
=

n∑
k=1

n+ k

n
· 1

n
=

n∑
k=1

(
1 +

k

n

)
· 1

n
.

Hence the sum is the Riemann sum of the function 1 + x. Therefore

lim
n→∞

(
n+ 1

n2
+
n+ 2

n2
+ · · ·+ 2n

n2

)
=

∫ 1

0

(1 + x)dx = x+
1

2
x2

∣∣∣∣∣
x=1

x=0

=
3

2
.
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