Fundamental Theorem of Calculus

The most important theorem in calculus is stated below. It relates the concept of differentiation and the concept of integration. Let's first consider the following definitions:

Definition. Let f be Riemann integrable over [a, b].

• A differentiable function F is called an *anti-derivative* of f if

$$F'(x) = f(x), \quad \forall x \in [a, b].$$

• The indefinite integral of f with basepoint $c \in [a, b]$ is defined by

$$F(x) = \int_{c}^{x} f(t)dt.$$

Proposition. Suppose F_1 and F_2 are anti-derivatives of $f \in \mathcal{R}[a, b]$. Then there exists a constant $c \in \mathbb{R}$ such that $F_1(x) = F_2(x) + c$ for all $x \in [a, b]$.

Proof. Consider the function $F(x) = F_1(x) - F_2(x)$. Note that

$$F'(x) = F'_1(x) - F'_2(x) = f(x) - f(x) = 0, \quad \forall x \in [a, b].$$

It suffices to show that F(x) = F(a) for all $x \in [a, b]$. In this case, we can take c = F(a).

- If x = a, it is obvious.
- If $x \in (a, b]$, note that F is continuous on [a, x] and differentiable on (a, x). By the Mean Value Theorem, there exists $\xi \in (a, x)$ such that

$$F(x) - F(a) = F'(\xi)(x - a) = 0.$$

This implies that F(x) = F(a) for all $x \in [a, b]$. The result follows.

Remark. Any two indefinite integrals with different basepoints also differ by a constant.

Fundamental Theorem of Calculus (c.f. Theorem 2.19 of Lecture Note). Let $f \in \mathcal{R}[a, b]$.

(a) If F is an anti-derivative of f, then

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

(b) Let F be an indefinite integral of f. Then F is (Lipschitz) continuous on [a,b]. Moreover, if f is continuous at $x \in [a,b]$, then F is differentiable at x and F'(x) = f(x).

Remark. In particular, any indefinite integral of a continuous function is its anti-derivative.

The **Fundamental Theorem of Calculus** helps us evaluate integrals. If an anti-derivative of the integrand is known, we can easily compute the integral.

Example 1. Evaluate $\int_0^{\pi} \cos x dx$.

Solution. Let $f(x) = \cos x$ and $F(x) = \sin x$. Note that F'(x) = f(x) for all x. Hence F is an anti-derivative of f. It follows from the **Fundamental Theorem of Calculus** that

$$\int_0^{\pi} \cos x dx = \int_0^{\pi} f(x) dx = F(\pi) - F(0) = \sin \pi - \sin 0 = 0.$$

Example 2. Observe the following application of the Fundamental Theorem of Calculus. Let $f(x) = 1/x^2$ and F(x) = -1/x. Note that F'(x) = f(x). Hence

$$\int_{-1}^{1} \frac{1}{x^2} dx = \int_{-1}^{1} f(x) dx = F(1) - F(-1) = -1 - 1 = -2.$$

This argument is **not correct**. In fact, f is not Riemann integrable over [-1, 1]. We cannot apply the **Fundamental Theorem of Calculus** to f.

Example 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and c > 0. Define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \int_{x-c}^{x+c} f(t)dt.$$

Show that g is differentiable on \mathbb{R} and find g'(x).

Solution. Since f is continuous, f has an anti-derivative $F : \mathbb{R} \to \mathbb{R}$. Note that

$$g(x) = \int_{x-c}^{x+c} f(t)dt = F(x+c) - F(x-c), \quad \forall x \in \mathbb{R}.$$

It follows that g(x) is differentiable on \mathbb{R} with

$$g'(x) = F'(x+c) - F'(x-c) = f(x+c) - f(x-c).$$

Example 4. Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Suppose f satisfies

$$\int_0^x f(t)dt = \int_x^1 f(t)dt, \quad \forall x \in [0,1].$$

Show that f(x) = 0 for all $x \in [0, 1]$.

Solution. Since f is continuous, f has an anti-derivative $F : [0,1] \to \mathbb{R}$. Apply the **Fundamental Theorem of Calculus** to the assumption,

$$F(x) - F(0) = F(1) - F(x) \implies F(x) = \frac{F(0) + F(1)}{2}, \quad \forall x \in [0, 1]$$

This implies that F is a constant function. Hence f(x) = F'(x) = 0 for all $x \in [0, 1]$.

Prepared by Ernest Fan

Riemann Sum

The construction of the Riemann integral from the textbook is different from the Lecture Note. Luckily, they are equivalent.

Theorem (c.f. Theorem 2.23 of Lecture Note). Let f be a bounded function defined on [a, b]. Then $f \in \mathcal{R}[a, b]$ if and only if there exists a number $L \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $P = \{x_0, x_1, ..., x_n\}$ is a partition of [a, b] with $||P|| < \delta$,

$$\left|\sum_{i=1}^{n} f(\xi_i) \Delta x_i - L\right| < \varepsilon.$$

Here, $\xi_i \in [x_{i-1}, x_i]$ for all i = 1, 2, ..., n. In this case, $L = \int_a^b f(x) dx$.

Remark. The sum above is called the **Riemann sum** of f with respect to the tagged partition P with $\xi_i \in [x_{i-1}, x_i]$.

Although this theorem is not useful to determine the integrability of bounded functions, the converse direction is useful to calculate limit of sums in special forms.

Example 5. Evaluate $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2}$.

Solution. Let's show that the limit is $\pi/4$ in a formal way. First notice that for any $n \in \mathbb{N}$,

$$\sum_{k=1}^{n} \frac{n}{n^2 + k^2} = \sum_{k=1}^{n} \frac{n}{n^2 + k^2} \cdot \frac{1/n^2}{1/n^2} = \sum_{k=1}^{n} \frac{1}{1 + (k/n)^2} \cdot \frac{1}{n}.$$

Consider the function $f(x) = 1/(1+x^2)$. Then the above sum is the Riemann sum of f with respect to the tagged partition P_n of [0, 1] given by

$$P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\right\}$$
 and $\xi_k = \frac{k}{n} \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$.

Hence the limit above is actually given by the integral of f over [0, 1]. Notice that f has an anti-derivative $F(x) = \arctan x$. By the **Fundamental Theorem of Calculus**,

$$\int_0^1 f(x)dx = F(1) - F(0) = \arctan 1 - \arctan 0 = \frac{\pi}{4}.$$

To show that the limit is $\pi/4$, let $\varepsilon > 0$. By the theorem above, there exists $\delta > 0$ such that whenever $P = \{x_0, x_1, ..., x_m\}$ is a partition of [0, 1] with $||P|| < \delta$,

$$\left|\sum_{i=1}^m f(\xi_i) \Delta x_i - \frac{\pi}{4}\right| < \varepsilon,$$

where $\xi_i \in [x_{i-1}, x_i]$ for all i = 1, 2, ..., m. Now choose $N \in \mathbb{N}$ so that $1/N < \delta$. Whenever $n \ge N$, consider the partition P_n and ξ_i defined as above. Then $||P_n|| = 1/n < \delta$. Hence

$$\left|\sum_{k=1}^{n} \frac{n}{n^2 + k^2} - \frac{\pi}{4}\right| = \left|\sum_{k=1}^{n} f(\xi_k) \Delta x_k - \frac{\pi}{4}\right| < \varepsilon.$$

Prepared by Ernest Fan

We usually don't need to present the evaluation of Riemann sums as rigorous as above.

Example 6. Evaluate

(a)
$$\lim_{n \to \infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \pi \right)$$
 (b) $\lim_{n \to \infty} \left(\frac{n+1}{n^2} + \frac{n+2}{n^2} + \dots + \frac{2n}{n^2} \right)$

Solution. We just need to transform the sum into the Riemann sum of a suitable function and then evaluate the desired integral.

(a) Note that for each $n \in \mathbb{N}$,

$$\frac{1}{n}\left(\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \dots + \sin\pi\right) = \frac{1}{n}\sum_{k=1}^{n}\sin\frac{k\pi}{n} = \sum_{k=1}^{n}\sin\left(\frac{k}{n}\pi\right) \cdot \frac{1}{n}$$

Hence the sum is the Riemann sum of the function $\sin(\pi x)$. Therefore

$$\lim_{n \to \infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \pi \right) = \int_0^1 \sin(\pi x) dx = -\frac{1}{\pi} \cos(\pi x) \Big|_{x=0}^{x=1} = \frac{2}{\pi}.$$

(b) Note that for each $n \in \mathbb{N}$,

$$\frac{n+1}{n^2} + \frac{n+2}{n^2} + \dots + \frac{2n}{n^2} = \sum_{k=1}^n \frac{n+k}{n^2} = \sum_{k=1}^n \frac{n+k}{n} \cdot \frac{1}{n} = \sum_{k=1}^n \left(1 + \frac{k}{n}\right) \cdot \frac{1}{n}.$$

Hence the sum is the Riemann sum of the function 1 + x. Therefore

$$\lim_{n \to \infty} \left(\frac{n+1}{n^2} + \frac{n+2}{n^2} + \dots + \frac{2n}{n^2} \right) = \int_0^1 (1+x) dx = x + \frac{1}{2} x^2 \Big|_{x=0}^{x=1} = \frac{3}{2}.$$