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Riemann Integrable Functions

Recall an important theorem that help us check the Riemann integrablility of a function:

Theorem (c.f. Theorem 2.10 of Lecture Note). Let f be a bounded function defined on a
closed and bounded interval [a, b]. f is Riemann integrable over [a, b] if and only if for every
ε > 0, there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) =
n∑
i=1

ωi(f, P )∆xi < ε.

Using the above theorem, the following fact can be deduced.

Theorem (c.f. Proposition 2.13 of Lecture Note). Let f : [a, b] → R be a function. If f is
continuous or monotone, then f is Riemann integrable over [a, b].

Remark. The function f is automatically bounded if it is continuous or monotone on [a, b].

Example 1. Let f be Riemann integrable over [a, b]. Suppose f̄(x) = f(x) for all but
finitely many x ∈ [a, b]. Show that f̄ is Riemann integrable over [a, b].

Solution. By induction, it suffices to show the case that f̄ = f on [a, b] except at c ∈ [a, b].
Suppose c ∈ (a, b). (The special cases c = a and c = b are left as an exercise.) Let ε > 0.
We need to find a partition P = {x1, x2, ..., xn} of [a, b] such that

n∑
i=1

ωi(f̄ , P )∆xi < ε.

Since f ∈ R[a, b], there exists a partition Q = {y1, y2, ..., ym} of [a, b] such that
m∑
j=1

ωj(f,Q)∆yj <
ε

2
.

Choose u, v ∈ [a, b] such that a < u < c < v < b and v−u < ε

2(M −m)
, where m and M are

lower and upper bounds of f̄ respectively. Take P = Q ∪ {u, v}. The indices i = 1, 2, ..., n
of the points in the partition P can be divided into the sets

I =
{
i : [xi−1, xi] ⊆ [u, v]

}
, and J = {1, 2, ..., n} \ I.

Therefore, we can estimate:
n∑
i=1

ωi(f̄ , P )∆xi =
∑
i∈I

ωi(f̄ , P )∆xi +
∑
i∈J

ωi(f̄ , P )∆xi

≤ (M −m)
∑
i∈I

∆xi +
m∑
j=1

ωj(f,Q)∆yj

≤ (M −m)(v − u) +
m∑
j=1

ωj(f,Q)∆yj

< (M −m) · ε

2(M −m)
+
ε

2
= ε

It follows that f̄ is also Riemann integrable over [a, b].
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Example 2. Let f : [a, b] → [c, d] and g : [c, d] → R be functions. Suppose f is Riemann
integrable over [a, b] and g is continuous. Show that g ◦ f is Riemann integrable over [a, b].

Solution. Let ε > 0. Notice that g is bounded and uniformly continuous on [c, d]. Hence
there exist M > 0 and δ > 0 such that |g(x)| ≤M for all x ∈ [c, d] and

|g(s)− g(t)| < ε

2(b− a)
, whenever s, t ∈ [c, d] and |s− t| < δ.

Since f ∈ R[a, b], there exists a partition P = {x1, x2, ..., xn} of [a, b] such that

n∑
i=1

ωi(f, P )∆xi <
δε

4M
.

The indices i = 1, 2, ..., n of the points in the partition P can be divided into the sets

I =
{
i : ωi(f, P ) < δ

}
and J =

{
i : ωi(f, P ) ≥ δ

}
.

Then, we estimate the two sums on the right-hand-side below:

n∑
i=1

ωi(g ◦ f, P )∆xi =
∑
i∈I

ωi(g ◦ f, P )∆xi +
∑
i∈J

ωi(g ◦ f, P )∆xi

Note that for any i ∈ I, |f(x)− f(y)| ≤ ωi(f, P ) < δ whenever x, y ∈ [xi−1, xi]. Hence

|g ◦ f(x)− g ◦ f(y)| = |g(f(x))− g(f(y))| < ε

2(b− a)
, ∀x, y ∈ [xi−1, xi].

Therefore the first sum can be estimated by:∑
i∈I

ωi(g ◦ f, P )∆xi ≤
ε

2(b− a)

∑
i∈I

∆xi ≤
ε

2(b− a)
· (b− a) =

ε

2
(1)

On the other hand, note that if i ∈ J , then

δ
∑
i∈J

∆xi ≤
∑
i∈J

ωi(f, P )∆xi ≤
n∑
i=1

ωi(f, P )∆xi <
δε

4M
=⇒

∑
i∈J

∆xi <
ε

4M

Therefore the second sum can be estimated by:∑
i∈J

ωi(g ◦ f, P )∆xi ≤ 2M
∑
i∈J

∆xi < 2M · ε

4M
=
ε

2
(2)

Finally, it follows from (1) and (2) that

n∑
i=1

ωi(g ◦ f, P )∆xi =
∑
i∈I

ωi(g ◦ f, P )∆xi +
∑
i∈J

ωi(g ◦ f, P )∆xi <
ε

2
+
ε

2
= ε.

Hence g ◦ f is Riemann integrable over [a, b].

Prepared by Ernest Fan 2



Tutorial 5 MATH2060B Mathematical Analysis II 22-24/02/2021

Some useful properties of Riemann integrable functions are listed below.

Theorem (c.f. Theorem 2.9 & 2.14 of Lecture Note). Let f, g ∈ R[a, b] and let α ∈ R.

(a) f + g ∈ R[a, b]. In this case,∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx.

(b) αf ∈ R[a, b]. In this case, ∫ b

a

αf(x)dx = α

∫ b

a

f(x)dx.

(c) If f ≤ g, i.e., f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.

(d) |f | ∈ R[a, b]. In this case, ∫ b

a

f(x)dx ≤
∫ b

a

|f(x)|dx.

Remark. (a) and (b) describe the vector space structure of R[a, b] and the linearity of the
integral. (c) describe the order structure of the integral. The converse of (d) does not hold.

Theorem (c.f. Theorem 2.16 of Lecture Note). If f, g ∈ R[a, b], then f · g ∈ R[a, b].

Remark. The theorem tells us that the function space R[a, b] is not only a vector space, but
also an algebra. i.e., a ring with scalar multiplication, or a vector space with multiplication.

Theorem (c.f. Theorem 2.15 of Lecture Note). Let f be a bounded function defined on [a, b]
and a < c < b. Then f ∈ R[a, b] if and only if f ∈ R[a, c] and f ∈ R[c, b]. In this case,∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Remark. From this theorem, we introduce the following notations for f ∈ R[a, b]:∫ a

a

f(x)dx = 0 and

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx

Mean Value Theorem for Integrals (c.f. Theorem 2.18 of Lecture Note). Let f be a
continuous function defined on [a, b] and g be non-negative and Riemann integrable over
[a, b]. Then there exists c ∈ [a, b] such that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.
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Corollary. Let f be a continuous function on [a, b]. Then there exists c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f(x)dx.

Proof. Apply the Mean Value Theorem for Integrals with g = 1.

Remark. The value on the right-hand side in the above equality represents the average
value of f over [a, b].

Example 3. The Mean Value Theorem for Integrals does not hold if the assumption
that g being non-negative is dropped.

Proof. Consider the functions f(x) = g(x) = sinx on [0, 2π]. Then∫ 2π

0

f(x)g(x)dx =

∫ 2π

0

sin2 xdx =

∫ 2π

0

1− cos 2x

2
dx = π.

On the other hand, for any c ∈ [0, 2π],

f(c)

∫ 2π

0

g(x)dx = sin c ·
∫ 2π

0

sinxdx = 0.

This shows that the equality can never be achieved.
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