The Riemann Integral

Definition (Partition). Let $I = [a, b]$ be a **closed and bounded** interval.

• A partition P of [a, b] is a **finite set** of points $x_0, x_1, ..., x_n \in [a, b]$ such that

$$
a = x_0 < x_1 < \cdots < x_n = b.
$$

- For each $i = 1, 2, ..., n$, denote $\Delta x_i = x_i x_{i-1}$.
- The norm of P is denoted by $||P|| = \max \Delta x_i$.

Definition (Upper sum and Lower sum). Let f be a **bounded** function defined on a closed and bounded interval [a, b], and let $P = \{x_0, x_1, ..., x_n\}$ be a partition of [a, b].

• For each $i = 1, 2, ..., n$, denote

$$
m_i(f, P) = \inf \Big\{ f(x) : x \in [x_{i-1}, x_i] \Big\}
$$
 and $M_i(f, P) = \sup \Big\{ f(x) : x \in [x_{i-1}, x_i] \Big\}.$

• The lower sum and upper sum of f with respect to P are denoted respectively by

$$
L(f, P) = \sum_{i=1}^{n} m_i(f, P) \Delta x_i
$$
 and $U(f, P) = \sum_{i=1}^{n} M_i(f, P) \Delta x_i$.

Remark. Since f is a bounded function, we can define

$$
m = \inf \Big\{ f(x) : x \in [a, b] \Big\}
$$
 and $M = \sup \Big\{ f(x) : x \in [a, b] \Big\}.$

Then for each $i = 1, 2, ..., n$, the set $\{f(x) : x \in [x_{i-1}, x_i]\}$ is bounded between m and M. Therefore m_i and M_i are well-defined. Moreover, we always have the following estimation:

$$
m(b-a) \le L(f, P) \le U(f, P) \le M(b-a)
$$

Furthermore, the oscillations $\omega_i(f, P) = M_i(f, P) - m_i(f, P)$ can be given by

$$
\omega_i(f, P) = \sup \{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i]\}.
$$

The following observation highlight the important features of the above definitions.

Lemma (c.f. Lemma 2.2 of Lecture Note). Let f be a bounded function defined on a closed and bounded interval $[a, b]$, and let P, Q be partitions of $[a, b]$.

- (a) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
- (b) $L(f, P) \le U(f, Q)$.

Remark. Q is called a *refinement* of P if $P \subseteq Q$.

Prepared by Ernest Fan 1

Definition. Let f be a bounded function defined on a closed and bounded interval [a, b].

• The lower integral and upper integral of f are denoted respectively by

$$
\int_{a}^{b} f = \sup \{ L(f, P) : P \text{ is a partition of } [a, b] \}
$$

$$
\overline{\int_{a}^{b} f} = \inf \{ U(f, P) : P \text{ is a partition of } [a, b] \}
$$

• f is said to be Riemann integrable over $[a, b]$ if the lower integral and upper integral are equal. In this case, the *integral* of f , denoted by

$$
\int_{a}^{b} f \quad \text{or} \quad \int_{a}^{b} f(x) dx,
$$

is defined as their common value and we write $f \in \mathcal{R}[a, b]$.

Example 1. The above quantities are visualized geometrically in the figure below:

Theorem (c.f. Theorem 2.10 of Lecture Note). Let f be a bounded function defined on a closed and bounded interval $[a, b]$. f is Riemann integrable over $[a, b]$ if and only if for every $\varepsilon > 0$, there exists a partition P of [a, b] such that

$$
U(f, P) - L(f, P) = \sum_{i=1}^{n} \omega_i(f, P) \Delta x_i < \varepsilon.
$$

Prepared by Ernest Fan 2

Example 2. Show that the identity function $f(x) = x$ is Riemann integrable over [0, 1].

Solution. Let's calculate the lower and upper integrals of f. Fix any $n \in \mathbb{N}$ and consider the partition \mathcal{P}_n of $[0,1]$ given by

$$
P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1\right\}.
$$

Notice that for each $i = 1, 2, ..., n$,

$$
\Delta x_i = \frac{i}{n} - \frac{i-1}{n} = \frac{1}{n}, \quad m_i(f, P_n) = \frac{i-1}{n}, \text{ and } M_i(f, P_n) = \frac{i}{n}.
$$

Hence the lower and upper sums of f with respect to P_n are

$$
L(f, P_n) = \sum_{i=1}^n m_i(f, P_n) \Delta x_i = \sum_{i=1}^n \frac{i-1}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \cdot \frac{n(n-1)}{2} = \frac{1}{2} \left(1 - \frac{1}{n} \right)
$$

$$
U(f, P_n) = \sum_{i=1}^n M_i(f, P_n) \Delta x_i = \sum_{i=1}^n \frac{i}{n} \cdot \frac{1}{n} = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{1}{2} \left(1 + \frac{1}{n} \right)
$$

It follows that the lower and upper integrals of f satisfy:

$$
\frac{1}{2}\left(1+\frac{1}{n}\right) = L(f, P_n) \le \int_a^b f \le \int_a^b f \le U(f, P_n) = \frac{1}{2}\left(1+\frac{1}{n}\right).
$$

Since $n \in \mathbb{N}$ is arbitrary, taking limit on both sides gives

$$
\frac{1}{2} \le \int_a^b f \le \overline{\int_a^b} f \le \frac{1}{2}.
$$

It follows that the upper and lower integrals of f are equal to each other. i.e., $f \in \mathcal{R}[0,1]$. **Remark.** The integral of f over $[0, 1]$ is $1/2$.

Example 3. Show that the Dirichlet function is not Riemann integrable over [0, 1].

Solution. Recall that the Dirichlet function is given by

$$
f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}
$$

Consider any partition P of [0, 1]. Notice that for each $i = 1, 2, ..., n$,

$$
m_i(f, P) = 0
$$
, and $M_i(f, P) = 1$.

Hence the lower and upper sums of f with respect to P are

$$
L(f, P) = \sum_{i=1}^{n} m_i(f, P_n) \Delta x_i = \sum_{i=1}^{n} 0 \cdot \Delta x_i = 0
$$

$$
U(f, P) = \sum_{i=1}^{n} M_i(f, P_n) \Delta x_i = \sum_{i=1}^{n} 1 \cdot \Delta x_i = 1
$$

Prepared by Ernest Fan 3

Since P is an arbitrary partition of [0, 1], taking supremum and infimum yields that the lower and upper integrals of f are

$$
\int_a^b f = 0 \quad \text{and} \quad \int_a^b f = 1.
$$

It follows that the upper and lower integrals of f are not equal to each other. i.e., $f \notin \mathcal{R}[0, 1]$.

Example 4. Let f be a continuous and non-negative function defiend on [a, b]. Show that $f(x) = 0$ for all $x \in [a, b]$ if

$$
\int_{a}^{b} f = 0.
$$

Solution. Suppose on a contrary that $f(c) > 0$ for some $c \in [a, b]$. By the continuity of f, there exists $\delta > 0$ such that whenever $x \in [a, b]$ and $|x - c| < \delta$,

$$
|f(x) - f(c)| < \frac{1}{2}f(c) \quad \implies \quad 0 < \frac{1}{2}f(c) < f(x) < \frac{3}{2}f(c).
$$

Suppose $c \in (a, b)$. (The special cases $c = a$ and $c = b$ are left as an exercise.) Let u, v be points in $[a, b]$ satisfying

$$
c - \delta < u < v < c + \delta.
$$

Consider the partition P of $[a, b]$ given by

$$
P = \{a, u, v, b\}.
$$

Then the lower sum of f with respect to P can be estimated by:

$$
L(f, P) = m_1(f, P)\Delta x_1 + m_2(f, P)\Delta x_2 + m_3(f, P)\Delta x_3
$$

\n
$$
\geq 0 \cdot (u - a) + \frac{1}{2}f(c) \cdot (v - u) + 0 \cdot (b - v)
$$

\n
$$
> 0
$$

It follows that

$$
0 = \int_{a}^{b} f = \int_{a}^{b} f \ge L(f, P) > 0.
$$

This is a contradiction, so f is constantly zero.