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Mean Value Theorem

Definition. Let I ⊆ R be an interval and let f : I → R be a function.

• f is said to have an absolute/global maximum at c ∈ I if f(c) ≥ f(x) for all x ∈ I.

• f is said to have an absolute/global minimum at c ∈ I if f(c) ≤ f(x) for all x ∈ I.

• f is said to have a relative/local maximum at c ∈ I if there exists δ > 0 such that

f(c) ≥ f(x), ∀x ∈ I ∩ (c− δ, c+ δ).

• f is said to have a relative/local minimum at c ∈ I if there exists δ > 0 such that

f(c) ≤ f(x), ∀x ∈ I ∩ (c− δ, c+ δ).

Example 1. 0 is not a relative extremum point of the function f : [0,∞)→ R given by

f(x) =

{
x sin(1/x), if x 6= 0,

0, if x = 0.

Proof. We need to show that for any δ > 0, there exist x1, x2 ∈ [0, δ) such that

f(x1) < f(0) < f(x2).

Consider the sequences (un) and (vn) in [0,∞) defined by

un =
1

2nπ + π/2
and vn =

1

2nπ + 3π/2
, ∀n ∈ N .

Note that sin(1/un) = 1 and sin(1/vn) = −1. Hence f(vn) < f(0) < f(un) for all n ∈ N.
Also, notice that both sequences converge to 0. Hence for any δ > 0, there exists N ∈ N
such that

uN < δ, and vN < δ =⇒ uN , vN ∈ [0, δ).

It follows that we can take x1 = vN and x2 = uN .

The following observation is simple, but it is essential to develop important results.

Interior Extremum Theorem (c.f. 6.2.1). Let c be an interior point of the interval I at
which f : I → R has a relative extremum. If the derivative of f at c exists, then f ′(c) = 0.

From this result, we can deduce the following useful theorems:

Rolle’s Theorem (c.f. 6.2.3). Suppose f is continuous on a closed interval [a, b], that the
derivative f ′ exists at every point of the open interval (a, b), and that f(a) = f(b) = 0. Then
there exists at least one point c in (a, b) such that f ′(c) = 0.
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Mean Value Theorem (c.f. 6.2.4). Suppose f is continuous on a closed interval [a, b], that
the derivative f ′ exists at every point of the open interval (a, b). Then there exists at least
one point c in (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

One application of the Mean Value Theorem is deducing inequalities.

Example 2 (c.f. Example 6.2.10(b)). Show that for any x ≥ 0, we have −x ≤ sinx ≤ x.

Solution. We need to divide the proof into two cases:

• Suppose x = 0. It is clear that the required inequality is indeed an equality.

• Suppse x > 0. Consider the sine function, which is continuous and differentiable on
R. In particular, it is continuous on [0, x] and differentiable on (0, x). Hence by the
Mean Value Theorem, there exists c ∈ (0, x) such that

sinx− sin 0 = cos c · (x− 0) ⇐⇒ sinx = cos c · x.

Since −1 ≤ cos c ≤ 1 and x > 0, we have −x ≤ sinx ≤ x.

Example 3. Show that for any x > 0, we have
x

1 + x
< ln(1 + x) < x.

Solution. Consider the function f given by f(x) = ln(1 + x). Note that f is is continuous
and differentiable on (−1,∞). In particular, it is continuous on [0, x] and differentiable on
(0, x). Hence by the Mean Value Theorem, there exists c ∈ (0, x) such that

ln(1 + x)− ln(1 + 0) =
1

1 + c
· (x− 0) ⇐⇒ ln(1 + x) =

1

1 + c
· x.

Since 0 < c < x, we have
1

1 + x
<

1

1 + c
<

1

1 + 0
= 1.

It follows that
x

1 + x
< ln(1 + x) < x.

Another application of the Mean Value Theorem is approximation.

Example 4 (c.f. Example 6.2.9(b)). Correct
√

105 to 1 decimal place.

Solution. Consider the square root function, which is continuous on [100, 105] and differen-
tiable on (100, 105). Hence by the Mean Value Theorem,

√
105−

√
100 =

1

2
√
c
· (105− 100), for some c ∈ (100, 105).

Note that since 100 < c < 105 < 121, we have 10 <
√
c < 11. It follows that

5

2
· 1

11
<

5

2
√
c
<

5

2
· 1

10
=⇒ 225

22
<
√

105 <
41

4
.

Since 225/22 ≈ 10.227 and 41/4 = 10.25, we have
√

105 = 10.2 correct to 1 decimal place.
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Taylor’s Theorem

Here are two generalizations of the Mean Value Theorem.

Cauchy Mean Value Theorem (c.f. 6.3.2). Let f and g be continuous on [a, b] and
differentiable on (a, b), and assume that g′(x) 6= 0 for all x ∈ (a, b). Then there exists
c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Taylor’s Theorem (c.f. 6.4.1). Let f be a function such that f and its derivatives f ′, f ′′,
..., f (n) are continuous on [a, b] and that f (n+1) exists on (a, b). If x0 ∈ [a, b], then for any
x ∈ [a, b] there exists a point c between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

Remark. In this case, we denote respectively the n-th order Taylor Polynomial of f and
the Remainder Term of f by:

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n

Rn(x) = f(x)− Pn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

Example 5. Show that for any x > 0, we have x− x3/6 ≤ sinx ≤ x+ x3/6.

Solution. Notice that the function f(x) = sinx is infinitely differentiable on R:

f (n)(x) =


sinx, if n = 4k,

cosx, if n = 4k + 1,

− sinx, if n = 4k + 2,

− cosx, if n = 4k + 3,

In particular, we have f (n)(0) = 0, 1, 0,−1, 0, 1, 0,−1, ... for n = 0, 1, 2, 3, 4, 5, 6, 7, .... Fix
any n ∈ N and apply the Taylor’s Theorem with x0 = 0 yields c ∈ (0, x) such that

f(x) = f(0) + f ′(0)(x− 0) + · · ·+ f (n)(0)

n!
(x− 0)n +

f (n+1)(c)

n!
(x− 0)n+1. (1)

In particular if we take n = 2,

sinx = 0 + 1 · x+ 0 · x2 +
− cos c

3!
· x3 = x− cos c

6
x3.

Since −1 ≤ cos c ≤ 1 and x > 0, we have

−x
3

6
≤ cos c

6
x3 ≤ x3

6
=⇒ x− x3

6
≤ sinx ≤ x+

x3

6
.

Remark. Compare it with Example 2.
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Example 6. Approximate sin(0.5) with error less than 10−5.

Solution. We need to approximate the sine function with a suitable polynomial (so that
we can compute by hand). The error of the polynomial to the sine function evaluated at
x = 0.5 should not exceed 10−5.
Using the Taylor’s Theorem, we can approximate the value of sin(0.5) by the Taylor
Polynomial. The error is controlled by the Remainder Term. By (1), there exists
c ∈ (0, 0.5) such that

| sin(0.5)− Pn(0.5)| = |Rn(x)| = |f
(n+1)(c)|

(n+ 1)!
(0.5− 0)(n+1) ≤ 1

2n+1
· 1

(n+ 1)!
.

So the error is controlled by n. We require:

1

2n+1
· 1

(n+ 1)!
< 10−5 ⇐⇒ 2n+1 · (n+ 1)! > 105 = 100000.

Notice that

• If n = 1, 2n+1 · (n+ 1)! = 8 < 100000.

• If n = 2, 2n+1 · (n+ 1)! = 48 < 100000.

• If n = 3, 2n+1 · (n+ 1)! = 384 < 100000.

• If n = 4, 2n+1 · (n+ 1)! = 3840 < 100000.

• If n = 5, 2n+1 · (n+ 1)! = 46080 < 100000.

• If n = 6, 2n+1 · (n+ 1)! = 645120 > 100000.

Hence it suffices to approximate the value of sin(0.5) by P6(0.5). i.e.,

sin(0.5) ≈ P6(0.5) = 1 · (0.5) +
−1

3!
· (0.5)3 +

1

5!
(0.5)5

=
1

2
− 1

48
+

1

3840
= 0.47942708333...
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