Mean Value Theorem

Definition. Let $I \subseteq \mathbb{R}$ be an interval and let $f : I \to \mathbb{R}$ be a function.

- f is said to have an absolute/global maximum at $c \in I$ if $f(c) \geq f(x)$ for all $x \in I$.
- f is said to have an *absolute/global minimum* at $c \in I$ if $f(c) \leq f(x)$ for all $x \in I$.
- f is said to have a relative/local maximum at $c \in I$ if there exists $\delta > 0$ such that

$$
f(c) \ge f(x), \quad \forall x \in I \cap (c - \delta, c + \delta).
$$

• f is said to have a *relative/local minimum* at $c \in I$ if there exists $\delta > 0$ such that

$$
f(c) \le f(x), \quad \forall x \in I \cap (c - \delta, c + \delta).
$$

Example 1. 0 is not a relative extremum point of the function $f : [0, \infty) \to \mathbb{R}$ given by

$$
f(x) = \begin{cases} x \sin(1/x), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}
$$

Proof. We need to show that for any $\delta > 0$, there exist $x_1, x_2 \in [0, \delta)$ such that

$$
f(x_1) < f(0) < f(x_2).
$$

Consider the sequences (u_n) and (v_n) in $[0,\infty)$ defined by

$$
u_n = \frac{1}{2n\pi + \pi/2}
$$
 and $v_n = \frac{1}{2n\pi + 3\pi/2}$, $\forall n \in \mathbb{N}$.

Note that $sin(1/u_n) = 1$ and $sin(1/v_n) = -1$. Hence $f(v_n) < f(0) < f(u_n)$ for all $n \in \mathbb{N}$. Also, notice that both sequences converge to 0. Hence for any $\delta > 0$, there exists $N \in \mathbb{N}$ such that

 $u_N < \delta$, and $v_N < \delta$ \implies $u_N, v_N \in [0, \delta)$.

It follows that we can take $x_1 = v_N$ and $x_2 = u_N$.

The following observation is simple, but it is essential to develop important results.

Interior Extremum Theorem (c.f. 6.2.1). Let c be an interior point of the interval I at which $f: I \to \mathbb{R}$ has a relative extremum. If the derivative of f at c exists, then $f'(c) = 0$.

From this result, we can deduce the following useful theorems:

Rolle's Theorem (c.f. 6.2.3). Suppose f is continuous on a closed interval $[a, b]$, that the derivative f' exists at every point of the open interval (a, b) , and that $f(a) = f(b) = 0$. Then there exists at least one point c in (a, b) such that $f'(c) = 0$.

 \Box

Mean Value Theorem (c.f. 6.2.4). Suppose f is continuous on a closed interval $[a, b]$, that the derivative f' exists at every point of the open interval (a, b) . Then there exists at least one point c in (a, b) such that

$$
f(b) - f(a) = f'(c)(b - a).
$$

One application of the Mean Value Theorem is deducing inequalities.

Example 2 (c.f. Example 6.2.10(b)). Show that for any $x \ge 0$, we have $-x \le \sin x \le x$.

Solution. We need to divide the proof into two cases:

- Suppose $x = 0$. It is clear that the required inequality is indeed an equality.
- Suppse $x > 0$. Consider the sine function, which is continuous and differentiable on R. In particular, it is continuous on $[0, x]$ and differentiable on $(0, x)$. Hence by the **Mean Value Theorem**, there exists $c \in (0, x)$ such that

$$
\sin x - \sin 0 = \cos c \cdot (x - 0) \qquad \Longleftrightarrow \qquad \sin x = \cos c \cdot x.
$$

Since $-1 \le \cos c \le 1$ and $x > 0$, we have $-x \le \sin x \le x$.

Example 3. Show that for any $x > 0$, we have $\frac{x}{1+x}$ $1 + x$ $< \ln(1+x) < x$.

Solution. Consider the function f given by $f(x) = \ln(1+x)$. Note that f is is continuous and differentiable on $(-1, \infty)$. In particular, it is continuous on $[0, x]$ and differentiable on $(0, x)$. Hence by the **Mean Value Theorem**, there exists $c \in (0, x)$ such that

$$
\ln(1+x) - \ln(1+0) = \frac{1}{1+c} \cdot (x-0) \quad \iff \quad \ln(1+x) = \frac{1}{1+c} \cdot x.
$$

Since $0 < c < x$, we have

$$
\frac{1}{1+x} < \frac{1}{1+c} < \frac{1}{1+0} = 1.
$$

It follows that

$$
\frac{x}{1+x} < \ln(1+x) < x.
$$

Another application of the Mean Value Theorem is approximation.

Example 4 (c.f. Example 6.2.9(b)). Correct $\sqrt{105}$ to 1 decimal place.

Solution. Consider the square root function, which is continuous on [100, 105] and differentiable on (100, 105). Hence by the Mean Value Theorem,

$$
\sqrt{105} - \sqrt{100} = \frac{1}{2\sqrt{c}} \cdot (105 - 100)
$$
, for some $c \in (100, 105)$.

Note that since $100 < c < 105 < 121$, we have $10 <$ √ \overline{c} < 11. It follows that

$$
\frac{5}{2} \cdot \frac{1}{11} < \frac{5}{2\sqrt{c}} < \frac{5}{2} \cdot \frac{1}{10} \quad \implies \quad \frac{225}{22} < \sqrt{105} < \frac{41}{4}.
$$

Since $225/22 \approx 10.227$ and $41/4 = 10.25$, we have $\sqrt{105} = 10.2$ correct to 1 decimal place.

Prepared by Ernest Fan 2

Taylor's Theorem

Here are two generalizations of the Mean Value Theorem.

Cauchy Mean Value Theorem (c.f. 6.3.2). Let f and g be continuous on [a, b] and differentiable on (a, b) , and assume that $g'(x) \neq 0$ for all $x \in (a, b)$. Then there exists $c \in (a, b)$ such that

$$
\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.
$$

Taylor's Theorem (c.f. 6.4.1). Let f be a function such that f and its derivatives f' , f'' , $..., f^{(n)}$ are continuous on [a, b] and that $f^{(n+1)}$ exists on (a, b) . If $x_0 \in [a, b]$, then for any $x \in [a, b]$ there exists a point c between x and x_0 such that

$$
f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)(x_0)}}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.
$$

Remark. In this case, we denote respectively the *n*-th order Taylor Polynomial of f and the **Remainder Term** of f by:

$$
P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n
$$

$$
R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.
$$

Example 5. Show that for any $x > 0$, we have $x - x^3/6 \le \sin x \le x + x^3/6$.

Solution. Notice that the function $f(x) = \sin x$ is infinitely differentiable on R:

$$
f^{(n)}(x) = \begin{cases} \sin x, & \text{if } n = 4k, \\ \cos x, & \text{if } n = 4k + 1, \\ -\sin x, & \text{if } n = 4k + 2, \\ -\cos x, & \text{if } n = 4k + 3, \end{cases}
$$

In particular, we have $f^{(n)}(0) = 0, 1, 0, -1, 0, 1, 0, -1, ...$ for $n = 0, 1, 2, 3, 4, 5, 6, 7, ...$ Fix any $n \in \mathbb{N}$ and apply the **Taylor's Theorem** with $x_0 = 0$ yields $c \in (0, x)$ such that

$$
f(x) = f(0) + f'(0)(x - 0) + \dots + \frac{f^{(n)}(0)}{n!}(x - 0)^n + \frac{f^{(n+1)}(c)}{n!}(x - 0)^{n+1}.
$$
 (1)

In particular if we take $n = 2$,

$$
\sin x = 0 + 1 \cdot x + 0 \cdot x^{2} + \frac{-\cos c}{3!} \cdot x^{3} = x - \frac{\cos c}{6} x^{3}.
$$

Since $-1 \le \cos c \le 1$ and $x > 0$, we have

$$
-\frac{x^3}{6} \le \frac{\cos c}{6} x^3 \le \frac{x^3}{6} \quad \implies \quad x - \frac{x^3}{6} \le \sin x \le x + \frac{x^3}{6}.
$$

Remark. Compare it with Example 2.

Prepared by Ernest Fan 3

Example 6. Approximate $sin(0.5)$ with error less than 10^{-5} .

Solution. We need to approximate the sine function with a suitable polynomial (so that we can compute by hand). The error of the polynomial to the sine function evaluated at $x = 0.5$ should not exceed 10^{-5} .

Using the Taylor's Theorem, we can approximate the value of $sin(0.5)$ by the Taylor Polynomial. The error is controlled by the Remainder Term. By (1), there exists $c \in (0, 0.5)$ such that

$$
|\sin(0.5) - P_n(0.5)| = |R_n(x)| = \frac{|f^{(n+1)}(c)|}{(n+1)!} (0.5 - 0)^{(n+1)} \le \frac{1}{2^{n+1}} \cdot \frac{1}{(n+1)!}.
$$

So the error is controlled by n . We require:

$$
\frac{1}{2^{n+1}} \cdot \frac{1}{(n+1)!} < 10^{-5} \quad \iff \quad 2^{n+1} \cdot (n+1)! > 10^5 = 100000.
$$

Notice that

- If $n = 1, 2^{n+1} \cdot (n+1)! = 8 < 100000$.
- If $n = 2, 2^{n+1} \cdot (n+1)! = 48 < 100000$.
- If $n = 3, 2^{n+1} \cdot (n+1)! = 384 < 100000$.
- If $n = 4$, $2^{n+1} \cdot (n+1)! = 3840 < 100000$.
- If $n = 5$, $2^{n+1} \cdot (n+1)! = 46080 < 100000$.
- If $n = 6, 2^{n+1} \cdot (n+1)! = 645120 > 100000$.

Hence it suffices to approximate the value of $sin(0.5)$ by $P_6(0.5)$. i.e.,

$$
\sin(0.5) \approx P_6(0.5) = 1 \cdot (0.5) + \frac{-1}{3!} \cdot (0.5)^3 + \frac{1}{5!} (0.5)^5
$$

$$
= \frac{1}{2} - \frac{1}{48} + \frac{1}{3840}
$$

$$
= 0.47942708333...
$$