Series of Functions

Similar to series of numbers, corresponding notations for series of functions can be defined.

Definition (c.f. Definition 9.4.1). Let (f_n) be a sequence of real-valued functions defined on $A \subseteq \mathbb{R}$ and let f be a function defined on A.

• The series $\sum f_n$ is said to *converge (pointwisely)* to f on A if $\sum f_n(x)$ converges to $f(x)$ for each $x \in A$. In this case, we denote

$$
f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} f_k(x)
$$
 or $f = \sum_{n=1}^{\infty} f_n$.

- The series $\sum f_n$ is said to *converge absolutely* on A if $\sum f_n(x)$ is absolutely convergent for each $x \in A$.
- The series $\sum f_n$ is said to *converge uniformly* to f on A if for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$
\left|\sum_{k=1}^{n} f_k(x) - f(x)\right| < \varepsilon, \quad \forall n \ge N, \quad \forall x \in A.
$$

The series version of the theorems involving interchange of limits are given below. They are in particular useful to deduce some nice result for power series.

Theorem (c.f. Theorem 9.4.2). Let (f_n) be a sequence of continuous functions defined on $A \subseteq \mathbb{R}$ and let f be a function defined on A. If $\sum f_n$ converges uniformly to f on A, then f is continuous on A.

Theorem (c.f. Theorem 9.4.3). Let (f_n) be a sequence of Riemann integrable functions defined on [a, b] and let f be a function defined on [a, b]. If $\sum f_n$ converges uniformly to f on $[a, b]$, then f is Riemann integrable over $[a, b]$ and

$$
\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx.
$$

Theorem (c.f. Theorem 9.4.4). Let (f_n) be a sequence of differentiable functions defined on (a, b) . Suppose that there exists a point $c \in (a, b)$ such that $\sum f_n(c)$ is convergent and $\sum f'_n$ converges uniformly on (a, b) . Then $\sum f_n$ converges uniformly to a differentiable function f on (a, b) and

$$
f'(x) = \sum_{n=1}^{\infty} f'_n(x), \quad \forall x \in (a, b).
$$

 $\sum f_n$ is uniformly convergent on $A \subseteq \mathbb{R}$ if and only if for each $\varepsilon > 0$ there exists $N \in \mathbb{N}$ **Cauchy Criterion** (c.f. 9.4.5). Let (f_n) be a sequence of functions defined on A. The series such that

 $|f_{n+1}(x) + f_{n+2}(x) + \cdots + f_{n+n}(x)| < \varepsilon, \quad \forall n \ge N, \quad \forall p \in \mathbb{N}, \quad \forall x \in A.$

A useful test of uniform convergence of series of functions is given below:

Weierstrass M-Test (c.f. 9.4.6). Let (f_n) be a sequence of real-valued functions defined on $A \subseteq \mathbb{R}$ and (M_n) be a sequence of positive real numbers such that $|f_n(x)| \leq M_n$ for all $x \in A$ and $n \in \mathbb{N}$. If the series $\sum M_n$ is convergent, then $\sum f_n$ is uniformly convergent on A.

Example 1 (c.f. Section 9.4, Ex.1). Determine the convergence of the following series of functions on the given domain of x .

(a)
$$
\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}
$$
, $x \in \mathbb{R}$.
\n(b) $\sum_{n=1}^{\infty} \frac{1}{n^2 x^2}$, $x \neq 0$.
\n(c) $\sum_{n=1}^{\infty} \frac{1}{x^n + 1}$, $x \ge 0$.

Solution. We will apply different tests to determine the convergence of the given series.

(a) We apply the Weierstrass M-Test here. Notice that

$$
|f_n(x)| = \frac{|\cos nx|}{n^2} \le \frac{1}{n^2}, \quad \forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}.
$$

Since the 2-series $\sum 1/n^2$ is convergent, the series is uniformly convergent on R.

(b) The pointwise convergence is easy. Notice that

$$
\sum_{n=1}^{\infty} f_n(x) = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n^2 x^2} = \lim_{N \to \infty} \frac{1}{x^2} \sum_{n=1}^{N} \frac{1}{n^2} = \frac{1}{x^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6x^2}, \quad \forall x \neq 0.
$$

For uniform convergence, notice that if we consider $n = N$, $p = 1$ and $x = 1/(n + 1)$,

$$
|f_{n+1}(x) + \dots + f_{n+p}(x)| = \frac{1}{(n+1)^2} \cdot (n+1)^2 = 1 > 0.
$$

Therefore the Cauchy Criterion implies that the series is not uniformly convergent on $\mathbb{R} \setminus \{0\}$. However, for any fixed $a > 0$, the **Weierstrass M-Test** shows that the series converges uniformly on $A = (-\infty, -a] \cup [a, \infty)$:

$$
|f_n(x)| = \frac{1}{n^2 x^2} \le \frac{1}{n^2 a^2}, \quad \forall n \in \mathbb{N}, \quad \forall x \in A.
$$

(c) For $0 \le x \le 1$, the series is divergent by the *n*-th **Term Test**:

$$
\lim_{n \to \infty} \frac{1}{x^n + 1} = 1, \quad \text{if } x \in [0, 1); \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{x^n + 1} = \frac{1}{2}, \quad \text{if } x = 1.
$$

For $x > 1$, we have

$$
|f_n(x)| = \frac{1}{x^n + 1} \le \frac{1}{x^n} = \left(\frac{1}{x}\right)^n, \quad \forall n, \in \mathbb{N}, \quad \forall x > 1.
$$

The **Comparison Test** implies that the series is (absolutely) convergent on $(1, \infty)$. Similar to the above example, we can show that the series does not convergent uniformly on $(1, \infty)$. On the other hand, we can verify by the **Weierstrass M-Test** that for any fixed $a > 1$, the series converges uniformly on [a, ∞).

Power Series

Definition (c.f. Definition 9.4.7). Let (a_n) be a sequence of real numbers and $c \in \mathbb{R}$. A (formal) power series around c is in the form

$$
f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n.
$$

Denote dom(f) as the set of $x \in \mathbb{R}$ for which the series is convergent.

Example 2 (c.f. Section 9.4, $Ex.6(e)$). Find dom(f), where f is the following power series.

$$
f(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n
$$

Solution. We always have $0 \in \text{dom}(f)$. For $x \neq 0$, we wish to apply the **Ratio Test**. Notice that for each $n \in \mathbb{N}$,

$$
\left| \frac{[(n+1)!]^{2} x^{n+1} / (2n+2)!}{(n!)^{2} x^{n} / (2n)!} \right| = |x| \cdot \frac{(n+1)^{2}}{(2n+2)(2n+1)} = |x| \cdot \frac{n+1}{2(2n+1)}.
$$

It follows that

$$
\lim_{n \to \infty} \left| \frac{\left[(n+1)! \right]^{2} x^{n+1} / (2n+2)!}{(n!)^{2} x^{n} / (2n)!} \right| = \lim_{n \to \infty} |x| \cdot \frac{n+1}{2(2n+1)} = \frac{|x|}{4}.
$$

We claim that $dom(f) = (-4, 4)$ by the following arguments:

• If $|x| < 4$, choose r such that $|x|/4 < r < 1$. Then there exists $K \in \mathbb{N}$ such that

$$
\left| \frac{[(n+1)!]^2 x^{n+1} / (2n+2)!}{(n!)^2 x^n / (2n)!} \right| \le r, \quad \forall n \ge K.
$$

The **Ratio Test** implies that $f(x)$ is (absolutely) convergent.

• If $|x| > 4$, choose r such that $1 < r < |x|/4$. Then there exists $K \in \mathbb{N}$ such that

$$
\left| \frac{[(n+1)!]^2 x^{n+1} / (2n+2)!}{(n!)^2 x^n / (2n)!} \right| \ge r > 1, \quad \forall n \ge K.
$$

The **Ratio Test** implies that $f(x)$ is divergent.

• If $x = \pm 4$, notice that

$$
f(4) = \sum_{n=0}^{\infty} \frac{(n!)^2 \cdot 4^n}{(2n)!} = \sum_{n=0}^{\infty} \frac{(2^n \cdot n!)^2}{(2n)!} = 1 + \sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)}
$$

$$
f(-4) = \sum_{n=0}^{\infty} \frac{(n!)^2 \cdot (-4)^n}{(2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot (2^n \cdot n!)^2}{(2n)!} = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)}
$$

The absolute value of each term of the series is greater than 1. The n -th Term Test implies that $f(\pm 4)$ are divergent.

The following theorem describe a remarkable property of power series.

Theorem. Suppose a power series f around 0 is convergent at some $c \in \mathbb{R}$. Then

- (a) $f(x)$ is absolutely convergent whenever $|x| < |c|$.
- (b) f converges uniformly on $[-\eta, \eta]$ whenever $|\eta| < |c|$.

Remark. Notice the following:

- By a translation $x \mapsto x + c$, we can always consider power series around 0.
- For any power series f around 0,
	- $-0 \in \text{dom}(f)$.
	- dom(f) must be an interval. i.e., $dom(f)$ takes one of the following forms:

 $\{0\}, \quad (-\infty, \infty), \quad (-r, r), \quad [-r, r], \quad (-r, r), \quad [-r, r).$

In this case, $r \in [0, \infty]$ is called the *radius of convergence* of f.

- The convergence of $f(\pm r)$ is not clear.
- The uniform convergence of f on dom(f) is not clear.

The continuity, integrability and differentiability of power series are summerized as follows. **Theorem.** Suppose f is a power series around 0 that converges on $(-r, r)$. i.e.,

$$
f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad \forall x \in (-r, r).
$$

Then:

- (a) f is continuous on $(-r, r)$.
- (b) The indefinite integral of f can be obtained by integrating f term-by-term. i.e.,

$$
\int_0^x f(t)dt = \sum_{n=0}^\infty \int_0^x a_n t^n dt = \sum_{n=0}^\infty \frac{a_n x^{n+1}}{n+1} = \sum_{n=1}^\infty \frac{a_{n-1} x^n}{n}, \quad \forall x \in (-r, r).
$$

(c) The derivative of f can be obtained by differentiating f term-by-term. i.e.,

$$
f'(x) = \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}, \quad \forall x \in (-r, r).
$$

Corollary. Suppose f is a power series around 0 that converges on $(-r, r)$. Then f is C^{∞} on $(-r, r)$. i.e., f is k-times differentiable on $(-r, r)$ for all $k \in \mathbb{N}$. Moreover, for each $k \in \mathbb{N}$, the k-th derivative of f is given by

$$
f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}, \quad \forall x \in (-r, r).
$$