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Series of Real Numbers

Definition (c.f. Definition 3.7.1). Let (xn) be a sequence of real numbers. Denote sn the
n-th partial sum of the series

∑
xn, given by

sn = x1 + x2 + · · ·+ xn =
n∑
k=1

xk.

The series
∑
xn is said to converge if (sn) converges. In this case, we denote

∞∑
k=1

xk = lim
n→∞

sn = lim
n→∞

n∑
k=1

xk.

Example 1 (c.f. Example 3.3.3(b)). The harmonic series
∑

1/n is divergent.

Proof. Let hn denote the n-th partial sum of the harmonic series. Note that for each n ∈ N,
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+
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+ · · ·+
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1
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+ · · ·+ 1

2n
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= 1 +

1

2
+

1

2
+ · · ·+ 1

2
= 1 +

n

2

It follows that (hn) is unbounded, hence it must be divergent.

Example 2 (c.f. Example 3.7.6(f)). The alternating harmonic series is convergent.

Proof. Let sn denote the n-th partial sum of the alternating harmonic series. Note that

s2n =

(
1− 1

2

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

2n− 1
− 1

2n

)
, ∀n ∈ N

s2n+1 = 1−
(

1

2
− 1

3

)
−
(

1

4
− 1

5

)
− · · · −

(
1

2n
− 1

2n+ 1

)
, ∀n ∈ N

Thus (s2n) is an increasing sequence and (s2n+1) is a decreasing sequence such that

0 < s2n < s2n+1 < 1, ∀n ∈ N .

By the Monotone Convergence Theorem, both of (s2n) and (s2n+1) are convergent.
Moreover, they converge to the same value α ∈ R because

s2n+1 = s2n +
1

2n+ 1
, ∀n ∈ N .

Let ε > 0. By definition of limit, there exist N1, N2 ∈ N such that

|s2n − α| < ε, ∀n ≥ N1 and |s2n+1 − α| < ε, ∀n ≥ N2.

Take N = max{2N1, 2N2 + 1} and suppose n ≥ N .
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• If n is even, then

n/2 ≥ N/2 ≥ N1 =⇒ |sn − α| = |s2(n/2) − α| < ε.

• If n is odd, then

(n− 1)/2 ≥ (N − 1)/2 ≥ N2 =⇒ |sn − α| = |s2[(n−1)/2]+1 − α| < ε.

In any cases, |sn − α| < ε. It follows that (sn) converges to α.

When we are given a series, we usually want to determine whether it is convergent or not.
The following are some basic tests of convergence.

The n-th term Test (c.f. 3.7.3). If the series
∑
xn converges, then limxn = 0.

Remark. Its contrapositive statement is useful. i.e., if (xn) does not converge to 0, then
the series

∑
xn is divergent.

Cauchy Criterion for Series (c.f. 3.7.4). The series
∑
xn converges if and only if for

every ε > 0, there exists N ∈ N such that

|xn+1 + xn+2 + · · ·+ xn+p| < ε, ∀n ≥ N, ∀p ∈ N.

Comparison Test (c.f. 3.7.7). Let (xn) and (yn) be sequences of real numbers. Suppose
there exists K ∈ N such that

0 ≤ xn ≤ yn, ∀n ≥ K.

Then

(a) the convergence of
∑
yn implies the convergence of

∑
xn.

(b) the divergence of
∑
xn implies the divergence of

∑
yn.

Definition (c.f. Definition 9.1.1). Let (xn) be a sequence of real numbers. The series
∑
xn

is said to converge absolutely if the series
∑
|xn| is convergent. The series

∑
xn is said to

converge conditionally if it is convergent but not absolutely convergent.

Example 3. Every convergent series without negative terms is absolutely convergent. e.g.,

∞∑
n=1

1

n2
and

∞∑
n=1

1

2n
.

From Example 1 and 2, the alternating harmonic series is conditionally convergent.

Theorem (c.f. Theorem 9.1.2). A series must be convergent if it is absolutely convergent.

Rearrangement Theorem (c.f. 9.1.5). Let
∑
xn be an absolutely convergent series. Then

for any bijection σ : N→ N,
∑
xσ(n) is also convergent and

∞∑
n=1

xσ(n) =
∞∑
n=1

xn.

Remark. A series
∑
xn is said to be unconditionally convergent if

∑
xσ(n) converges to the

same value for all bijection σ : N→ N.
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Tests of Absolute Convergence

The following tests of absolute convergence are mainly due to the Comparison Test.

Root Test (c.f. 9.2.2). Let (xn) be a sequence real numbers.

(a) If there exists r < 1 and K ∈ N such that

|xn|1/n ≤ r, ∀n ≥ K,

then the series
∑
xn is absolutely convergent.

(b) If there exists K ∈ N such that

|xn|1/n ≥ 1, ∀n ≥ K,

then the series
∑
xn is divergent.

Ratio Test (c.f. 9.2.4). Let (xn) be a sequence of non-zero real numbers.

(a) If there exists r < 1 and K ∈ N such that∣∣∣∣xn+1

xn

∣∣∣∣ ≤ r, ∀n ≥ K,

then the series
∑
xn is absolutely convergent.

(b) If there exists K ∈ N such that ∣∣∣∣xn+1

xn

∣∣∣∣ ≥ 1, ∀n ≥ K,

then the series
∑
xn is divergent.

Remark. The Root Test and the Ratio Test are inconclusive when r = 1.

Integral Test (c.f. 9.2.6). Let f : [1,∞)→ R be a continuous, decreasing, positive function.
Then the series

∑
f(n) is convergent if and only if the improper integral∫ ∞

1

f(x)dx = lim
b→∞

∫ b

1

f(x)dx

exists. In this case,∫ ∞
N+1

f(x)dx ≤
∞∑

n=N+1

f(n) ≤
∫ ∞
N

f(x)dx, ∀N ∈ N .

Remark. An application of the Integral Test implies that the p-series
∑

1/np is convergent
for p > 1 and divergent for p ≤ 1.
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Example 4 (c.f. Section 9.2, Ex.2, 3, 4 & 7). Determine the convergence of the following
series.

(a)
∞∑
n=1

nne−n

(b)
∞∑
n=1

n!

nn

(c)
∞∑
n=2

(lnn)− lnn

(d)
∞∑
n=2

(n lnn)−1

(e)
∞∑
n=1

n!e−n
2

(f)
∞∑
n=1

(−1)nn

n+ 1

Solution. Let’s check the convergence of the series using suitable tests.

(a) We apply the Root Test here. Note that

|xn|1/n = |nne−n|1/n =
n

e
≥ 1, ∀n ≥ 3.

Hence the series is divergent.

(b) We apply the Ratio Test here. Note that∣∣∣∣xn+1

xn

∣∣∣∣ =
(n+ 1)!/(n+ 1)n+1

n!/nn
=

(n+ 1)!

n!
· nn

(n+ 1)n+1
=

nn

(n+ 1)n
.

Therefore we have

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = lim
n→∞

nn

(n+ 1)n
= lim

n→∞

(
1 +

1

n

)−n
=

1

e
< 1.

Hence the series is convergent.

(c) We apply the Comparison Test here. Note that

ln(xn) = − lnn ln(lnn) ≤ −2 lnn, ∀n ≥ 2000.

(Here we want ln(lnn) ≥ 2. i.e., n ≥ ee
2 ≈ 1618.17.) Hence we have

0 ≤ xn ≤
1

n2
, ∀n ≥ 2000.

Since
∑

1/n2 is convergent, the series is also convergent.

(d) We apply the Integral Test here. Consider the function f : [2,∞)→ R defined by

f(x) =
1

x lnx
.

Then f is a continuous, decreasing, positive function with f(n) = xn. Also, if the
improper integral exists, it is given by∫ ∞

2

1

x lnx
dx = lim

b→∞

∫ b

2

1

lnx
d(lnx) = lim

b→∞

[
ln(lnx)

]x=b
x=2

=∞.

Hence the improper integral does not exist, therefore the series is divergent.
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(e) We apply the Ratio Test here. Note that∣∣∣∣xn+1

xn

∣∣∣∣ =
(n+ 1)!e−(n+1)2

n!e−n2 =
(n+ 1)!

n!
· en

2

e(n+1)2
=
n+ 1

e2n+1
.

Applying the L’Hospital’s Rule, we have

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ = lim
n→∞

n+ 1

e2n+1
= lim

n→∞

1

2e2n+1
= 0 < 1.

Hence the series is convergent.

(f) We apply the n-th Term Test here. Note that

lim
n→∞

x2n = lim
n→∞

(−1)2n · 2n
2n+ 1

= 1 6= 0.

Since the subsequence (x2n) of (xn) does not converge to 0, (xn) must not converge to
0. Hence the series is divergent.
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