Series of Real Numbers

Definition (c.f. Definition 3.7.1). Let (x_n) be a sequence of real numbers. Denote s_n the *n-th partial sum* of the *series* $\sum x_n$, given by

$$
s_n = x_1 + x_2 + \dots + x_n = \sum_{k=1}^n x_k.
$$

The series $\sum x_n$ is said to converge if (s_n) converges. In this case, we denote

$$
\sum_{k=1}^{\infty} x_k = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^{n} x_k.
$$

Example 1 (c.f. Example 3.3.3(b)). The *harmonic series* $\sum 1/n$ is divergent.

Proof. Let h_n denote the *n*-th partial sum of the harmonic series. Note that for each $n \in \mathbb{N}$,

$$
h_{2^n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{n-1} + 1} + \dots + \frac{1}{2^n}\right)
$$

\n
$$
\geq 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^n} + \dots + \frac{1}{2^n}\right)
$$

\n
$$
= 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 1 + \frac{n}{2}
$$

It follows that (h_n) is unbounded, hence it must be divergent.

Example 2 (c.f. Example 3.7.6(f)). The *alternating harmonic series* is convergent.

Proof. Let s_n denote the *n*-th partial sum of the alternating harmonic series. Note that

$$
s_{2n} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{2n}\right), \quad \forall n \in \mathbb{N}
$$

$$
s_{2n+1} = 1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \dots - \left(\frac{1}{2n} - \frac{1}{2n + 1}\right), \quad \forall n \in \mathbb{N}
$$

Thus (s_{2n}) is an increasing sequence and (s_{2n+1}) is a decreasing sequence such that

$$
0 < s_{2n} < s_{2n+1} < 1, \quad \forall n \in \mathbb{N} \, .
$$

By the **Monotone Convergence Theorem**, both of (s_{2n}) and (s_{2n+1}) are convergent. Moreover, they converge to the same value $\alpha \in \mathbb{R}$ because

$$
s_{2n+1} = s_{2n} + \frac{1}{2n+1}, \quad \forall n \in \mathbb{N}.
$$

Let $\varepsilon > 0$. By definition of limit, there exist $N_1, N_2 \in \mathbb{N}$ such that

$$
|s_{2n} - \alpha| < \varepsilon, \quad \forall n \ge N_1 \quad \text{and} \quad |s_{2n+1} - \alpha| < \varepsilon, \quad \forall n \ge N_2.
$$

Take $N = \max\{2N_1, 2N_2 + 1\}$ and suppose $n \geq N$.

Prepared by Ernest Fan 1

 \Box

 \Box

• If n is even, then

 $n/2 \ge N/2 \ge N_1 \implies |s_n - \alpha| = |s_{2(n/2)} - \alpha| < \varepsilon.$

• If n is odd, then

$$
(n-1)/2 \ge (N-1)/2 \ge N_2 \quad \Longrightarrow \quad |s_n - \alpha| = |s_{2[(n-1)/2]+1} - \alpha| < \varepsilon.
$$

In any cases, $|s_n - \alpha| < \varepsilon$. It follows that (s_n) converges to α .

When we are given a series, we usually want to determine whether it is convergent or not. The following are some basic tests of convergence.

The n-th term Test (c.f. 3.7.3). If the series $\sum x_n$ converges, then $\lim x_n = 0$.

Remark. Its contrapositive statement is useful. i.e., if (x_n) does not converge to 0, then the series $\sum x_n$ is divergent.

Cauchy Criterion for Series (c.f. 3.7.4). The series $\sum x_n$ converges if and only if for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$
|x_{n+1} + x_{n+2} + \dots + x_{n+p}| < \varepsilon, \quad \forall n \ge N, \quad \forall p \in \mathbb{N}.
$$

Comparison Test (c.f. 3.7.7). Let (x_n) and (y_n) be sequences of real numbers. Suppose there exists $K \in \mathbb{N}$ such that

$$
0 \le x_n \le y_n, \quad \forall n \ge K.
$$

Then

- (a) the convergence of $\sum y_n$ implies the convergence of $\sum x_n$.
- (b) the divergence of $\sum x_n$ implies the divergence of $\sum y_n$.

Definition (c.f. Definition 9.1.1). Let (x_n) be a sequence of real numbers. The series $\sum x_n$ is said to *converge absolutely* if the series $\sum |x_n|$ is convergent. The series $\sum x_n$ is said to converge conditionally if it is convergent but not absolutely convergent.

Example 3. Every convergent series without negative terms is absolutely convergent. e.g.,

$$
\sum_{n=1}^{\infty} \frac{1}{n^2}
$$
 and
$$
\sum_{n=1}^{\infty} \frac{1}{2^n}.
$$

From Example [1](#page-0-0) and [2](#page-0-1), the alternating harmonic series is conditionally convergent.

Theorem (c.f. Theorem 9.1.2). A series must be convergent if it is absolutely convergent.

Rearrangement Theorem (c.f. 9.1.5). Let $\sum x_n$ be an absolutely convergent series. Then for any bijection $\sigma : \mathbb{N} \to \mathbb{N}$, $\sum x_{\sigma(n)}$ is also convergent and

$$
\sum_{n=1}^{\infty} x_{\sigma(n)} = \sum_{n=1}^{\infty} x_n.
$$

Remark. A series $\sum x_n$ is said to be unconditionally convergent if $\sum x_{\sigma(n)}$ converges to the same value for all bijection $\sigma : \mathbb{N} \to \mathbb{N}$.

Prepared by Ernest Fan 2

Tests of Absolute Convergence

The following tests of absolute convergence are mainly due to the Comparison Test.

Root Test (c.f. 9.2.2). Let (x_n) be a sequence real numbers.

(a) If there exists $r < 1$ and $K \in \mathbb{N}$ such that

$$
|x_n|^{1/n} \le r, \quad \forall n \ge K,
$$

then the series $\sum x_n$ is absolutely convergent.

(b) If there exists $K \in \mathbb{N}$ such that

$$
|x_n|^{1/n} \ge 1, \quad \forall n \ge K,
$$

then the series $\sum x_n$ is divergent.

Ratio Test (c.f. 9.2.4). Let (x_n) be a sequence of non-zero real numbers.

(a) If there exists $r < 1$ and $K \in \mathbb{N}$ such that

$$
\left|\frac{x_{n+1}}{x_n}\right| \le r, \quad \forall n \ge K,
$$

then the series $\sum x_n$ is absolutely convergent.

(b) If there exists $K \in \mathbb{N}$ such that

$$
\left|\frac{x_{n+1}}{x_n}\right| \ge 1, \quad \forall n \ge K,
$$

then the series $\sum x_n$ is divergent.

Remark. The **Root Test** and the **Ratio Test** are inconclusive when $r = 1$.

Integral Test (c.f. 9.2.6). Let $f : [1, \infty) \to \mathbb{R}$ be a continuous, decreasing, positive function. Then the series $\sum f(n)$ is convergent if and only if the improper integral

$$
\int_{1}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{1}^{b} f(x)dx
$$

exists. In this case,

$$
\int_{N+1}^{\infty} f(x)dx \le \sum_{n=N+1}^{\infty} f(n) \le \int_{N}^{\infty} f(x)dx, \quad \forall N \in \mathbb{N}.
$$

Remark. An application of the **Integral Test** implies that the *p*-series $\sum 1/n^p$ is convergent for $p > 1$ and divergent for $p \leq 1$.

Prepared by Ernest Fan 3

Example 4 (c.f. Section 9.2, Ex.2, 3, 4 $\&$ 7). Determine the convergence of the following series.

(a)
$$
\sum_{n=1}^{\infty} n^n e^{-n}
$$

\n(b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
\n(c) $\sum_{n=2}^{\infty} (\ln n)^{-\ln n}$
\n(d) $\sum_{n=2}^{\infty} (n \ln n)^{-1}$
\n(e) $\sum_{n=1}^{\infty} n! e^{-n^2}$
\n(f) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$

Solution. Let's check the convergence of the series using suitable tests.

(a) We apply the Root Test here. Note that

$$
|x_n|^{1/n} = |n^n e^{-n}|^{1/n} = \frac{n}{e} \ge 1, \quad \forall n \ge 3.
$$

Hence the series is divergent.

(b) We apply the Ratio Test here. Note that

$$
\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)!/(n+1)^{n+1}}{n!/n^n} = \frac{(n+1)!}{n!} \cdot \frac{n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)^n}.
$$

Therefore we have

$$
\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-n} = \frac{1}{e} < 1.
$$

Hence the series is convergent.

(c) We apply the Comparison Test here. Note that

ln(x_n) = − ln n ln(ln n) ≤ −2 ln n, $\forall n \ge 2000$.

(Here we want $\ln(\ln n) \geq 2$. i.e., $n \geq e^{e^2} \approx 1618.17$.) Hence we have

$$
0 \le x_n \le \frac{1}{n^2}, \quad \forall n \ge 2000.
$$

Since $\sum 1/n^2$ is convergent, the series is also **convergent**.

(d) We apply the **Integral Test** here. Consider the function $f : [2, \infty) \to \mathbb{R}$ defined by

$$
f(x) = \frac{1}{x \ln x}.
$$

Then f is a continuous, decreasing, positive function with $f(n) = x_n$. Also, if the improper integral exists, it is given by

$$
\int_{2}^{\infty} \frac{1}{x \ln x} dx = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{\ln x} d(\ln x) = \lim_{b \to \infty} \left[\ln(\ln x) \right]_{x=2}^{x=b} = \infty.
$$

Hence the improper integral does not exist, therefore the series is divergent.

Prepared by Ernest Fan 4

(e) We apply the Ratio Test here. Note that

$$
\left|\frac{x_{n+1}}{x_n}\right| = \frac{(n+1)!e^{-(n+1)^2}}{n!e^{-n^2}} = \frac{(n+1)!}{n!} \cdot \frac{e^{n^2}}{e^{(n+1)^2}} = \frac{n+1}{e^{2n+1}}.
$$

Applying the L'Hospital's Rule, we have

$$
\lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{n+1}{e^{2n+1}} = \lim_{n \to \infty} \frac{1}{2e^{2n+1}} = 0 < 1.
$$

Hence the series is convergent.

(f) We apply the n -th Term Test here. Note that

$$
\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} \frac{(-1)^{2n} \cdot 2n}{2n + 1} = 1 \neq 0.
$$

Since the subsequence (x_{2n}) of (x_n) does not converge to 0, (x_n) must not converge to 0. Hence the series is divergent.