
Tutorial 1 MATH2060B Mathematical Analysis II 18-20/01/2021

General Information

• Textbook: Introduction to Real Analysis by Robert G. Bartle, Donald R. Sherbert.
(Try to google the title of the textbook for MORE information!)

• This course is a continuation of MATH2050 Mathematical Analysis I, which the ma-
terials of this course depend heavily on. Make sure that you are familiar with them.

• Please visit the course web-page at https://www.math.cuhk.edu.hk/course/2021/

math2060b frequently to get the most updated information. It shall contain the
information for homework and tests, as well as lecture notes and tutorial notes.

• I am the tutor of this section. You may call me Ernest. You are welcomed to send
me an email if you need help. My email address is ylfan@math.cuhk.edu.hk.

• The grader of this section is Marco. He is responsible for grading the assignments.
His email address is kllam@math.cuhk.edu.hk.

• Please submit each of your homework and tests in one PDF file to Blackboard.

• The two tutorials in the same week contain the same content, you may attend either
class on your choice.

Differentiability

Definition (c.f. Definition 6.1.1). Let I ⊆ R be an interval containing c and f : I → R be a
function. A real number L is said to be the derivative of f at c if for any ε > 0, there exists
δ > 0 such that∣∣∣∣f(x)− f(c)

x− c
− L

∣∣∣∣ < ε, whenever x ∈ I and 0 < |x− c| < δ.

In this case, we say that f is differentiable at c and denote f ′(c) = L.

Remark. By comparing to the definitions of differentiability and the limit of functions, f
is differentiable at c with derivative L if and only if the following limits exist and equal L:

lim
x→c

f(x)− f(c)

x− c
= lim

h→0

f(c+ h)− f(c)

h

We can actually define the derivative of a function at limit points in an arbitrary subsets of
R, but the concept is more natural if we restrict the attention on intervals.

The following theorem can be derived easily from definition.

Theorem (c.f. Theorem 6.1.2). Let I ⊆ R be an interval containing c. If f : I → R is
differentiable at c, then f is continuous at c.
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Example 1. Show that the following functions are differentiable at x = 1 and find their
respecitve derivatives:

(a) f(x) = x2 (b) f(x) =
√
x (c) f(x) = sin x

Solution. We will use different approaches to show the results.

(a) Let’s use ε-δ notation to show that the derivative of f at x = 1 is 2. Note that∣∣∣∣x2 − 12

x− 1
− 2

∣∣∣∣ =

∣∣∣∣x2 − 1− 2(x− 1)

x− 1

∣∣∣∣ =

∣∣∣∣(x− 1)2

x− 1

∣∣∣∣ = |x− 1|, ∀x 6= 1.

Let ε > 0 and take δ = ε. Then whenever 0 < |x− 1| < δ,∣∣∣∣x2 − 12

x− 1
− 2

∣∣∣∣ = |x− 1| < δ = ε.

Hence f ′(1) = 2, so f is differentiable at x = 1 with derivative 2.

(b) Let’s use limit notation to show that the derivative of f at x = 1 is 0.5. Note that

√
x−
√

1

x− 1
=

√
x− 1

x− 1
·
√
x+ 1√
x+ 1

=
1√
x+ 1

, ∀x 6= 1.

Hence we have

lim
x→1

√
x−
√

1

x− 1
= lim

x→1

1√
x+ 1

=
1√

1 + 1
=

1

2
.

Hence f ′(1) = 0.5, so f is differentiable at x = 1 with derivative 0.5.

(c) Again, we use limit notation to find the derivative. Note that

sin(1 + h)− sin 1

h
=

2

h
cos

(
2 + h

2

)
sin

h

2
= cos

(
2 + h

2

)
· sin(h/2)

h/2
, ∀h 6= 0.

Using continuity and the fact that (sinx)/x→ 1 as x→ 0, we have

lim
h→0

sin(1 + h)− sin 1

h
= cos

(
2 + 0

2

)
· lim
h→0

sin(h/2)

h/2
= cos 1 · 1 = cos 1.

Hence f ′(1) = 1, so f is differentiable at x = 1 with derivative 1.

Example 2. Show that the following functions are not differentiable at x = 0:

(a) f(x) = | sinx|, (b) f(x) = 3
√
x, (c) f(x) = sgn(x).

Solution. We can observe the graphs of the functions and see that they are not differentiable.
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(a) We show that the following limit does not exists:

lim
x→0

| sinx| − | sin 0|
x− 0

= lim
x→0

| sinx|
x

This can be done by looking at its left-hand and right-hand limits:

lim
x→0−

| sinx|
x

= − lim
x→0−

sinx

x
= −1 and lim

x→0+

| sinx|
x

= lim
x→0+

sinx

x
= 1

Since the one-sided limits are not equal, the limit does not exist. Hence f is not
differentiable at x = 0.

(b) We show that the following limit does not exists:

lim
x→0

3
√
x− 0

x− 0
= lim

x→0

x1/3

x
= lim

x→0
x−2/3

Recall that if the limit exists, then x−2/3 must be bounded in some neighbourhood of
0 (c.f. Theorem 4.2.2). i.e., there exists δ > 0 and M > 0 such that

|x−2/3| ≤M, whenever 0 < |x| < δ.

However, we can always find a small enough number x0 such that 0 < x0 < δ and
x
−2/3
0 > M . Therefore the limit does not exists, so f is not differentiable at x = 0.

(c) Notice that f is not continuous at x = 0. Hence it is not differentiable at x = 0 by
Theorem 6.1.2.

Theorem (c.f. Theorem 6.1.3). Let I ⊆ R be an interval containing c, f : I → R and
g : I → R be functions that are differentiable at c. Then:

(a) For any α ∈ R, the function αf is differentiable at c, and

(αf)′(c) = αf ′(c).

(b) The function f + g is differentiable at c, and

(f + g)′(c) = f ′(c) + g′(c).

(c) (Product Rule) The function fg is differentiable at c, and

(fg)′(c) = f ′(c)g(c) + f(c)g′(c).

(d) (Quotient Rule) If g(c) 6= 0, then the function f/g is differentiable at c, and

(f/g)′(c) =
f ′(c)g(c)− f(c)g′(c)

[g(c)]2
.
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Chain Rule

The following theorem characterize the differentiability of a function at a certain point. It
is essential to prove the chain rule.

Carathéodory’s Theorem (c.f. 6.1.5). Let f be defined on an interval I containing the
point c. Then f is differentiable at c if and only if there exists a function ϕ on I that is
continuous at c and

f(x)− f(c) = ϕ(x)(x− c), ∀x ∈ I.
In this case, we have ϕ(c) = f ′(c).

Chain Rule (c.f. 6.1.6). Let I, J be intervals in R, let g : I → R and f : J → R be functions
such that f(J) ⊆ I, and let c ∈ J . If f is differentiable at c and if g is differentiable at f(c),
then the composite function g ◦ f is differentiable at c and

(g ◦ f)′(c) = g′(f(c)) · f ′(c).
Remark. The basic results of differentiability are clear. Please focus on their proofs.

Example 3 (c.f. Section 6.1, Ex.12). If r > 0 is a rational number, let f : [0,∞) → R be
defined by f(x) = xr sin(1/x) for x 6= 0 and f(0) = 0. Determine those values of r for which
f ′(0) exists.

Solution. We show that f ′(0) exists if and only if r > 1. First note that the difference
quotient at 0 is given by

f(x)− f(0)

x− 0
=
xr sin(1/x)− 0

x− 0
= xr−1 sin(1/x), ∀x > 0.

Hence we have

−xr−1 ≤
∣∣∣∣f(x)− f(0)

x− 0

∣∣∣∣ ≤ xr−1, ∀x > 0.

• If r > 1, notice that xr−1 → 0 as x→ 0+. Hence by the Squeeze Theorem,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= 0.

• If r = 1, consider the sequences (xn) and (un) in [0,∞) defined by

xn =
1

2nπ + π/2
and un =

1

2nπ
.

Then we have xn → 0 and un → 0, and

lim
n→∞

f(xn)− f(0)

xn − 0
= 1 and lim

n→∞

f(un)− f(0)

un − 0
= 0.

So the limit of the difference quotient does not exists. i.e., f ′(0) does not exists.

• If 0 < r < 1, consider the sequence (xn) defined as above. We have xn → 0 and

f(xn)− f(0)

xn − 0
=

(
2πn+

π

2

)1−r
.

Note that this sequence is unbounded, so the limit of the difference quotient does not
exists. i.e., f ′(0) does not exists.
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