- 1 (P.280 Q1c,d). For each of the following series,
 - i. determine if it converges
- ii. determine if it converges absolutely

a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}n}{n+2}$$
 b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln(n)}{n}$

Solution.

a. i. The series does not converge. Write $x_n := \frac{(-1)^{n+1}n}{n+2}$ and $y_n := \frac{(-1)^{n+1}}{n+2}$. Then $x_n = (-1)^{n+1} - 2\frac{(-1)^{n+1}}{n+2} = (-1)^{n+1} - 2y_n$. Suppose it were true that $\sum_n x_n$ converges. From the convergence of alternating harmonic series, it follows that $\sum_n y_n$ converges. Hence by considering linear combination of series, the series $\sum_n x_n + 2y_n = \sum_n (-1)^{n+1}$ converges. However it is well know that $\sum_n (-1)^{n+1}$ does not converge. Contradiction aries.

ii. Since the series does not converge, it does not converge absolutely.

b. i. The series converge. Write $x_n := (-1)^{n+1} \ln(n)/n$ and $y_n := \ln n/n$. Then $x_n = (-1)^{n+1} y_n$ for all $n \in \mathbb{N}$. By considering the function $f(x) := \ln(x)/x$ with derivative $f'(x) = (1 - \ln(x))/x^2$ on $(0, \infty)$. By the Mean Value Theorem, it follows that (y_n) is non-negative decreasing when $n \geq 3$. Furthermore, $\lim_{x\to\infty} \ln(x)/x = \lim_{x\to\infty} 1/x = 0$ by the L'Hospital Rule. It follows that $\lim_n y_n = 0$ by sequential criteria. Hence, by the alternating series test $\sum_{n\geq 3} x_n = \lim_{n\geq 3} (-1)^{n+1} y_n$ converges. It follows clearly that $\sum_{n\geq 1} x_n$ converges as well.

ii. The series does not converge absolutely. With the above notation, $|x_n| = y_n$ for all $n \ge 1$. Note that $y_n = f(n)$ for all $n \ge 1$. Since f is continuous, non-negative decreasing on $[3, \infty)$, it follows from the integral test that $\sum_{n\ge 3} y_n$ converges if and only if $\int_3^\infty f(x) dx$ exists. By the Fundamental Theorem of Calculus, for all $b \ge 3$, we have

$$\int_{3}^{b} f(x)dx = \int_{3}^{b} \frac{\ln(x)}{n} dx = \frac{1}{2} \left(\ln(x)\right)^{2} \Big]_{3}^{b}$$

which diverges to ∞ as $b \to \infty$ (why?). Hence, the improper integral does not exists and so $\sum_{n\geq 3} y_n$ does not converge and so as $\sum_{n\geq 1} |x_n| = \sum_{n\geq 1} y_n$.

Comment.

- An alternative (and easier) solution for Q1a(i) is to use the m-term test by showing that $\lim_{n \to \infty} x_n \neq 0$ where $x_n := \frac{(-1)^{n+1}n}{n+2}$. This can be shown by for example considering subsequences like (x_{2n}) or the absolute valued sequence $(|x_n|)$.
- For Q1b(i), the alternating series test states that if $(|y_n|)$ is a non-negative decreasing sequence with $\lim y_n = 0$, then the series $\sum_n (-1)^{n+1} y_n$ converges. It can be proved along the same line of thought using the Summation by Part formula as in the solution of Q2 and 3.
- An alternative (and easier) solution for Q1b(ii) is to use the comparison test together with the divergence of the harmonic series and the fact that $\frac{\ln(n)}{n} \ge \frac{1}{n} \ge 0$ for $n \ge 3$.
- There is no differentiation for functions defined on the domain \mathbb{N} . Make sure to define a function on some open intervals of \mathbb{R} to work with *and then* induce properties for the related sequence using results you have learnt.
- Make sure you have a continuous, non-negative and decreasing function on a suitable domain when you are using the integral test.

¹Please feel free to email your TA at kllam@math.cuhk.edu.hk for any questions concerning homework.

Question 2 and 3 can be done with the help of the Abel's Summation By Part Formula.

Lemma 0.1 (Summation By Part). Let (x_n) , (a_n) be sequences of real numbers and (s_n) be the sequence of partial sum of the series $\sum a_n$. Then it follows that for all natural numbers $n \ge 2$, we have

$$\sum_{i=1}^{n} a_i x_i = s_n x_n - \sum_{i=1}^{n-1} s_i (x_{i+1} - x_i)$$

Proof. Let $n \geq 2$. Then

$$\sum_{i=2}^{n} x_i s_i - x_{i-1} s_{i-1} = x_n s_n - x_1 s_1 = x_n s_n - x_1 a_1$$

On the other hand,

$$\sum_{i=2}^{n} x_i s_i - x_{i-1} s_{i-1} = \sum_{i=2}^{n} x_i s_i - x_i s_{i-1} + x_i s_{i-1} - x_{i-1} s_{i-1}$$
$$= \sum_{i=2}^{n} x_i (s_i - s_{i-1}) + \sum_{i=2}^{n} (x_i - x_{i-1}) s_{i-1}$$
$$= \sum_{i=2}^{n} x_i a_i + \sum_{i=2}^{n} (x_i - x_{i-1}) s_{i-1}$$

By equating the above, it follows that

$$\sum_{i=2}^{n} x_{i}a_{i} + \sum_{i=2}^{n} (x_{i} - x_{i-1})s_{i-1} = x_{n}s_{n} - x_{1}a_{1}$$

$$\implies \qquad \sum_{i=1}^{n} x_{i}a_{i} = x_{n}s_{n} - \sum_{i=2}^{n} (x_{i} - x_{i-1})s_{i-1}$$

$$\implies \qquad \sum_{i=1}^{n} x_{i}a_{i} = x_{n}s_{n} - \sum_{i-1}^{n-1} (x_{i+1} - x_{i})s_{i}$$

$$\implies \qquad \sum_{i=1}^{n} a_{i}x_{i} = s_{n}x_{n} - \sum_{i=1}^{n-1} s_{i}(x_{i+1} - x_{i})$$

Remark.

• In general, let $(x_n), (a_n)$ be sequences of real numbers and (s_n) be the sequence of partial sum of (a_n) . Then for all $n > m \ge 1$, one can compute using the above that

$$\sum_{i=m}^{n} a_i x_i = s_n x_n - s_{m-1} x_m - \sum_{i=m}^{n-1} s_i (x_{i+1} - x_i)$$

• Let $\sum a_n$ be a series. By considering the terms $a_n = s_n - s_{n-1}$ as "derivatives" of the partial sum (s_n) , one shall see the analog of the summation by part formula with the integration by part formula, which states that for f, g continuous differentiable on \mathbb{R} , we have

$$\int_{a}^{b} f(t)dg(t) = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(t)df(t)$$

where $\int_a^b f(t)dg(t) := \int_a^b f(t)g'(t)dt$ and $\int_a^b g(t)f(t) := \int_a^b g(t)f'(t)dt$ for all $b \ge a$ where $a, b \in \mathbb{R}$.

2 (P.280 Q9). Let $\sum a_n$ be a series. Suppose the sequence of partial sum (s_n) of the series $\sum a_n$ is bounded. Show that the series $\sum_{n=1}^{\infty} a_n e^{-nt}$ converges for t > 0.

Solution. Let $x_n := e^{-nt}$. Then by the summation by part formula, we have for $n \ge 2$ that

$$\sum_{i=1}^{n} a_n e^{-nt} = \sum_{i=1}^{n} a_n x_n = s_n x_n - \sum_{i=1}^{n-1} s_i (x_{i+1} - x_i)$$

It suffices to show that $(s_n x_n)$ and $(\sum_{i=1}^{n-1} s_i (x_{i+1} - x_i))$ converges. First, since $|s_n x_n| = |s_n| |x_n| \le ||(s_n)||_{\infty} |x_n|$ where $||(s_n)||_{\infty} := \sup_n |s_n| < \infty$ and it is clear that $\lim_n x_n = 0$, it follows from the sandwich theorem that $\lim_n s_n x_n$ exists.

Next, we claim that $\sum s_i(x_{i+1}-x_i)$ converges absolutely. Note that (x_n) is a non-negative decreasing function by considering the derivative of the function $f(x) := e^{-xt}$ on $(0, \infty)$. It follows that for all $i \in \mathbb{N}$, we have

$$|s_i(x_{i+1} - x_i)| = |s_i|(x_i - x_{i+1}) \le ||(s_n)||_{\infty}(x_i - x_{i+1})$$

where $\lim_{n} \sum_{i=1}^{n} x_i - x_{i+1} = \lim_{n} x_1 - x_{n+1} = x_1$. It follows from the comparison test $\sum s_i(x_{i+1} - x_i)$ converges absolutely. Combining the two convergence, we have that $\sum_{i=1}^{\infty} a_n e^{-nt}$ converges. Comment.

• The Dirichlet Test says that if (x_n) is a decreasing sequence with $\lim_n x_n = 0$, and $\sum a_n$ with bounded partial sum (s_n) , then the series $\sum a_n x_n$ converges. This test is an immediate solution to this question; in fact one can obtain its proof by slightly modifying the above solution.

3 (P.280 Q14). Let $\sum_{k=1}^{\infty} a_k$ be a series with sequence of partial sums (s_n) . Suppose there exists r < 1

and M > 0 such that $|s_n| \le Mn^r$ for all $n \in \mathbb{N}$. Show that the series $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.

Solution. Let $x_n := 1/n$. Then by the summation by part forum, we have for all $n \ge 2$

$$\sum_{i=1}^{n} a_i x_i = s_n x_n - \sum_{i=1}^{n-1} s_i (x_{i+1} - x_i)$$

It suffices to show that $(s_n x_n)$ and $(\sum_{i=1}^{n-1} s_i (x_{i+1} - x_i))$ converges. First $|s_n x_n| \leq M n^r n^{-1} = M n^{r-1}$ for all $n \in \mathbb{N}$. Since r-1 < 0, we have $\lim_n n^{r-1} = 0$. It follows

First $|s_n x_n| \leq Mn'n^{-1} = Mn'^{-1}$ for all $n \in \mathbb{N}$. Since r - 1 < 0, we have $\lim_n n'^{-1} = 0$. It follows from the sandwich theorem that $\lim_n s_n x_n = 0$ and so exists. Next, we claim that $\sum s_i(x_{i+1} - x_i)$ converges absolutely. Note that since $(x_n := 1/n)$ is clearly

Next, we claim that $\sum s_i(x_{i+1} - x_i)$ converges absolutely. Note that since $(x_n := 1/n)$ is clearly non-negative decreasing, for all $n \in \mathbb{N}$, we have

$$|s_n(x_{n+1} - x_n)| = |s_n|(x_n - x_{n+1}) = |s_n| \frac{1}{n(n+1)} \le Mn^r \frac{1}{n^2} = \frac{M}{n^{2-r}}$$

Since r < 1, we have 2 - r > 1. Therefore the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2-r}}$ converges. It follows from the comparison test that $\sum s_i(x_{i+1} - x_i)$ converges absolutely and so converges. Combining the two convergence, we have that $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges.

Comment.

• It is crucial to emphasize that 2 - r > 1 and so the related p-series converges.