
MATH 2060B - HW 7 - Solutions1

1 (P.280 Q1c,d). For each of the following series,

i. determine if it converges

ii. determine if it converges absolutely

∞∑
n=1

(−1)n+1n

n + 2
a)

∞∑
n=1

(−1)n+1 ln(n)

n
b)

Solution.

a. i. The series does not converge. Write xn := (−1)n+1n
n+2 and yn := (−1)n+1

n+2 . Then xn = (−1)n+1 −
2 (−1)n+1

n+2 = (−1)n+1 − 2yn. Suppose it were true that
∑

n xn converges. From the convergence
of alternating harmonic series, it follows that

∑
n yn converges. Hence by considering linear

combination of series, the series
∑

n xn + 2yn =
∑

n(−1)n+1 converges. However it is well know
that

∑
n(−1)n+1 does not converge. Contradiction aries.

ii. Since the series does not converge, it does not converge absolutely.

b. i. The series converge. Write xn := (−1)n+1 ln(n)/n and yn := lnn/n. Then xn = (−1)n+1yn
for all n ∈ N. By considering the function f(x) := ln(x)/x with derivative f ′(x) = (1− ln(x))/x2

on (0,∞). By the Mean Value Theorem, it follows that (yn) is non-negative decreasing when
n ≥ 3. Furthermore, limx→∞ ln(x)/x = limx→∞ 1/x = 0 by the L’Hospital Rule. It fol-
lows that limn yn = 0 by sequential criteria. Hence, by the alternating series test

∑
n≥3 xn =

limn≥3(−1)n+1yn converges. It follows clearly that
∑

n≥1 xn converges as well.

ii. The series does not converge absolutely. With the above notation, |xn| = yn for all n ≥ 1.
Note that yn = f(n) for all n ≥ 1. Since f is continuous, non-negative decreasing on [3,∞), it
follows from the integral test that

∑
n≥3 yn converges if and only if

∫∞
3

f(x)dx exists. By the
Fundamental Theorem of Calculus, for all b ≥ 3, we have∫ b

3

f(x)dx =

∫ b

3

ln(x)

n
dx =

1

2
(ln(x))2

]b
3

which diverges to ∞ as b → ∞ (why?). Hence, the improper integral does not exists and so∑
n≥3 yn does not converge and so as

∑
n≥1 |xn| =

∑
n≥1 yn.

Comment.

• An alternative (and easier) solution for Q1a(i) is to use the m-term test by showing that

limn xn 6= 0 where xn := (−1)n+1n
n+2 . This can be shown by for example considering subsequences

like (x2n) or the absolute valued sequence (|xn|).

• For Q1b(i), the alternating series test states that if (|yn|) is a non-negative decreasing sequence
with lim yn = 0, then the series

∑
n(−1)n+1yn converges. It can be proved along the same line

of thought using the Summation by Part formula as in the solution of Q2 and 3.

• An alternative (and easier) solution for Q1b(ii) is to use the comparison test together with the

divergence of the harmonic series and the fact that ln(n)
n ≥ 1

n ≥ 0 for n ≥ 3.

• There is no differentiation for functions defined on the domain N. Make sure to define a
function on some open intervals of R to work with and then induce properties for the related
sequence using results you have learnt.

• Make sure you have a continuous, non-negative and decreasing function on a suitable domain
when you are using the integral test.

1Please feel free to email your TA at kllam@math.cuhk.edu.hk for any questions concerning homework.
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Question 2 and 3 can be done with the help of the Abel’s Summation By Part Formula.

Lemma 0.1 (Summation By Part). Let (xn), (an) be sequences of real numbers and (sn) be the
sequence of partial sum of the series

∑
an. Then it follows that for all natural numbers n ≥ 2, we

have
n∑

i=1

aixi = snxn −
n−1∑
i=1

si(xi+1 − xi)

Proof. Let n ≥ 2. Then

n∑
i=2

xisi − xi−1si−1 = xnsn − x1s1 = xnsn − x1a1

On the other hand,

n∑
i=2

xisi − xi−1si−1 =

n∑
i=2

xisi − xisi=1 + xisi−1 − xi−1si−1

=

n∑
i=2

xi(si − si−1) +

n∑
i=2

(xi − xi−1)si−1

=

n∑
i=2

xiai +

n∑
i=2

(xi − xi−1)si−1

By equating the above, it follows that

n∑
i=2

xiai +

n∑
i=2

(xi − xi−1)si−1 = xnsn − x1a1

=⇒
n∑

i=1

xiai = xnsn −
n∑

i=2

(xi − xi−1)si−1

=⇒
n∑

i=1

xiai = xnsn −
n−1∑
i−1

(xi+1 − xi)si

=⇒
n∑

i=1

aixi = snxn −
n−1∑
i=1

si(xi+1 − xi)

Remark.

• In general, let (xn), (an) be sequences of real numbers and (sn) be the sequence of partial sum
of (an). Then for all n > m ≥ 1, one can compute using the above that

n∑
i=m

aixi = snxn − sm−1xm −
n−1∑
i=m

si(xi+1 − xi)

• Let
∑

an be a series. By considering the terms an = sn − sn−1 as ”derivatives” of the partial
sum (sn), one shall see the analog of the summation by part formula with the integration by
part formula, which states that for f, g continuous differentiable on R, we have∫ b

a

f(t)dg(t) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(t)df(t)

where
∫ b

a
f(t)dg(t) :=

∫ b

a
f(t)g′(t)dt and

∫ b

a
g(t)f(t) :=

∫ b

a
g(t)f ′(t)dt for all b ≥ a where

a, b ∈ R.
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2 (P.280 Q9). Let
∑

an be a series. Suppose the sequence of partial sum (sn) of the series
∑

an is

bounded. Show that the series

∞∑
n=1

ane
−nt converges for t > 0.

Solution. Let xn := e−nt. Then by the summation by part formula, we have for n ≥ 2 that

n∑
i=1

ane
−nt =

n∑
i=1

anxn = snxn −
n−1∑
i=1

si(xi+1 − xi)

It suffices to show that (snxn) and (
∑n−1

i=1 si(xi+1 − xi)) converges.
First, since |snxn| = |sn||xn| ≤ ‖(sn)‖∞|xn| where ‖(sn)‖∞ := supn |sn| < ∞ and it is clear that
limn xn = 0, it follows from the sandwich theorem that limn snxn exists.
Next, we claim that

∑
si(xi+1−xi) converges absolutely. Note that (xn) is a non-negative decreasing

function by considering the derivative of the function f(x) := e−xt on (0,∞). It follows that for all
i ∈ N, we have

|si(xi+1 − xi)| = |si|(xi − xi+1) ≤ ‖(sn)‖∞(xi − xi+1)

where limn

∑n
i=1 xi−xi+1 = limn x1−xn+1 = x1. It follows from the comparison test

∑
si(xi+1−xi)

converges absolutely. Combining the two convergence, we have that
∑∞

i=1 ane
−nt converges.

Comment.

• The Dirichlet Test says that if (xn) is a decreasing sequence with limn xn = 0, and
∑

an
with bounded partial sum (sn), then the series

∑
anxn converges. This test is an immediate

solution to this question; in fact one can obtain its proof by slightly modifying the above
solution.
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3 (P.280 Q14). Let

∞∑
k=1

ak be a series with sequence of partial sums (sn). Suppose there exists r < 1

and M > 0 such that |sn| ≤Mnr for all n ∈ N. Show that the series

∞∑
n=1

an
n

converges.

Solution. Let xn := 1/n. Then by the summation by part forumla, we have for all n ≥ 2

n∑
i=1

aixi = snxn −
n−1∑
i=1

si(xi+1 − xi)

It suffices to show that (snxn) and (
∑n−1

i=1 si(xi+1 − xi)) converges.
First |snxn| ≤ Mnrn−1 = Mnr−1 for all n ∈ N. Since r − 1 < 0, we have limn n

r−1 = 0. It follows
from the sandwich theorem that limn snxn = 0 and so exists.
Next, we claim that

∑
si(xi+1 − xi) converges absolutely. Note that since (xn := 1/n) is clearly

non-negative decreasing, for all n ∈ N, we have

|sn(xn+1 − xn)| = |sn|(xn − xn+1) = |sn|
1

n(n + 1)
≤Mnr 1

n2
=

M

n2−r

Since r < 1, we have 2 − r > 1. Therefore the p-series

∞∑
n=1

1

n2−r converges. It follows from the

comparison test that
∑

si(xi+1 − xi) converges absolutely and so converges.

Combining the two convergence, we have that

∞∑
n=1

an
n

converges.

Comment.

• It is crucial to emphasize that 2− r > 1 and so the related p-series converges.
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