MATH 2060B - HW 6 Due Date: 24 March 2021, 23:59

Problems: Ex8.1 P.246: 12, 22, 23

(3 Questions in total)

Textbook: Bartle RG, Sherbert DR(2011). Introduction to Real Analysis, fourth edition, John Wiley Sons,Inc.

Instruction:

- 1. Please submit your solution in one pdf file to Blackboard.
- 2. Rename your file in the form "HW1_ChanTaiMan_1155151031".
- 3. You are reminded that your HW is graded based on **both** your idea and your presentation

Questions:

1 (P.246 Q12). Let (f_n) be the sequence of functions defined on \mathbb{R} by $f_n(x) := \frac{nx}{1+n^2x^2}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Then it is known that (f_n) converges pointwise to 0.

- i. Show that the sequence converges uniformly on $[a, \infty)$ if a > 0.
- ii. Show that the sequence does not converge uniformly on $[0,\infty)$

2 (P.246 Q22). Let (f_n) be a sequence of functions defined by $f_n(x) := x + \frac{1}{n}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$. Define f(x) := x for all $x \in \mathbb{R}$.

- i. Show that (f_n) converges uniformly to f on \mathbb{R} .
- ii. Show that (f_n^2) does not converge uniformly on \mathbb{R} .

Remark. This shows that uniform convergence may not be preserved by multiplication.

3 (P.246 Q23). Let (f_n) , (g_n) be sequences of *bounded* functions on some subset $A \subset \mathbb{R}$ which converge uniformly on A to f, g respectively.

Show that $(f_n g_n)$ converges uniformly on A to fg.