
MATH 2060B - HW 5 - Solutions1

1 (P.224 Q14). Show that there does NOT exist a function f ∈ C1[0, 2] (cotinuously differentiable
on [0, 2]) such that

i. f(0) = −1

ii. f(2) = 4

iii. f ′(x) ≤ 2 for all x ∈ [0, 2]

(The Fundamental Theorem may be useful).

Solution.
Method 1: Using Fundamental Theorem of Calculus (FTC):
Suppose not. Let f ∈ C1[0, 2] satisfying the conditions. Then f ′ is continuous on [0, 2]. Note that
f is an anti-derivative of f ′ by definition. It follows from part (i) of FTC as stated in the Lecture

Note that f(2)− f(0) =
∫ 2

0
f ′(x)dx. It follows that

|f(2)− f(0)| =
∣∣∣∣∫ 2

0

f ′(x)dx

∣∣∣∣ ≤ ∫ 2

0

|f ′(x)|dx ≤
∫ 2

0

2dx = 4

However, we have f(2)− f(0) = 4− (−1) = 5, which contradicts the above inequality.

Method 2: Using Mean Value Theorem:
Suppose not. Note that f is differentiable on (0, 2) and continuous on [0, 2] by assumption. Hence
by the Mean Value Theorem, there exists ξ ∈ (0, 2) such that f(2) − f(0) = f ′(ξ)(2 − 0), which
implies 4− (−1) = 2f ′(ξ). Hence, f ′(ξ) = 2.5 > 2, contradicting the third assumption.

Comment. The equality f(2) − f(0) =
∫ 2

0
f ′(x)dx follows from the continuity (or integrability) of

f ′ by FTC part (i).

1Please feel free to email your TA at kllam@math.cuhk.edu.hk for any questions concerning homework.

1

mailto:kllam@math.cuhk.edu.hk


2 (P.224 Q17). Let J := [α, β] and let φ : J → R be cotinuously differentiable on J . Let f : I → R
be continuous on an interval I such that φ(J) ⊂ I.
Define F (u) :=

∫ u
φ(α)

f(x)dx for all u ∈ I and H(t) := F (φ(t)) for all t ∈ J .

i. Show that H ′(t) = f(φ(t))φ′(t) for all t ∈ J

ii. Show that ∫ φ(β)

φ(α)

f(x)dx = F (φ(β)) = H(β) =

∫ β

α

f(φ(t))φ′(t)dt

Remark. This is a proof to the Substitution Theorem (Theorem 7.3.8)

Solution.

i. Consider I to be an open interval and write I = (a, b) where a < b. Since f is continuous on I,
it is Riemann-integrable on I and so on [a, b] (why?). We can define F0(x) :=

∫ x
a
f(t)dt for all

x ∈ [a, b]. Note that even though f is only known to be continuous on (a, b) without knowledge
of continuity on endpoints, it is still easy to see that F ′0(x) = f ′(x) for all x ∈ (a, b):
Let x ∈ (a, b) and let ε > 0. Then by continuity of f , there exists δ > 0 such that |f(x)− f(y)| <
ε for all y ∈ Bδ(x). It then follows that for all y ∈ Bδ(x)\{0} ∩ (a, b), we have

F0(y)− F0(x)

y − x
=

1

y − x

∫ y

x

f(t)dt =
1

y − x

∫ y

x

f(t)− f(x)dt+ f(x)

Hence, for all y ∈ Bδ(x)\{0} ∩ (a, b), we have∣∣∣∣F0(y)− F0(x)

y − x
− f(x)

∣∣∣∣ =
1

|y − x|

∣∣∣∣∫ y

x

f(t)− f(x)dt

∣∣∣∣
≤ 1

|y − x|

∫ y

x

|f(t)− f(x)|dt ≤ 1

|y − x|
· |y − x| · ε

It follows by definition that F ′0(x) := limy→x
F (y)−F (x)

y−x = f ′(x)

Note that F (u) =
∫ u
φ(α)

f(x)dx =
∫ u
a
f(x)dx−

∫ φ(α)
a

f(x)dx = F0(u) + C for all u ∈ I where C

is some constant. Hence it follows that F is differentiable on I with F ′(u) = F ′0(u) = f(u) for
all u ∈ I.
In addition by assumption, we have that φ is differentiable on J and φ(J) ⊂ I.
By the chain rule, it follows that H(t) := F ◦ φ(t) is differentiable for all t ∈ J . Furthermore,
we have

H ′(t) = F ′(φ(t))φ′(t) = f(φ(t))φ′(t)

for all t ∈ J .
The proof for non-open interval is similar where differentiability at end-points is defined via
one-sided limit.

ii. Since φ is continuously differentiable, φ, φ′ are continuous. Furthermore f is continuous by
assumption. It follows that H ′ is continuous on J by the formula on (i). It follows from the
Fundamental Theorem of Calculus that

H(β)−H(α) =

∫ β

α

H ′(t)dt =

∫ β

α

f(φ(t))φ′(t)dt

while by definitions, we have

H(β)−H(α) = F (φ(β))− F (φ(α)) =

∫ φ(β)

φ(α)

f(x)dx−
∫ φ(α)

φ(α)

f(x)dx =

∫ φ(β)

φ(α)

f(x)dx

The result follows by noting that H(α) = F (φ(α)) = 0.

2



Comment.

i. For part (i), the conditions in (i) are not quite the same as those stated in the Lecture Notes on
the Fundamental Theorem of Calculus. Here f is not necessarily continuous on a closed bounded
interval and we also need H ′ to exist on a closed bounded interval instead of an open interval.
The first paragraph of the solution justifies the validity of FTC under the slightly modified
assumptions and conclusions.

ii. The differentiablity of F follows from the continuity of f by FTC part (ii) as in the Lecture
Note.

iii. The equanlity H(β)−H(α) =
∫ β
α
H ′(t)dt follows from the continuity (in fact also integrability)

of H ′ by FTC part (i) as in the Lecture Note.
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3 (P.224 Q22). Let h : [0, 1]→ R be the Thomae’s function, that is

h(x) =

{
1
p x = q

p , gcd(q, p) = 1, q, p ∈ N
0 x /∈ Q

for all x ∈ [0, 1]. Let sgn be the sign function. Show that the composition sgn ◦h is not Riemann
integrable on [0, 1].

Solution. Note that g := sgn ◦h(x) =

{
1 x ∈ Q
0 x /∈ Q

for all x ∈ [0, 1].

We can show g is not Riemann integrable on [0, 1] by showing that
∫ 1

0
g(x)dx = 1 and

∫ 1

0
g(x)dx = 0.

By denseness of Q and Qc resepctively, it is easy to see that U(g, P ) = 1 and L(g, P ) = 0 for all
partition P .
The result follows clearly taking infimum and supremum on upper and lower sums respectively.

Comment. Note that both the Thomae’s function and the sign function are Riemman integrable
on [0, 1]. The former can be proved by noting that the Thomae’s function is continuous except
for a countable set (the function is continuous on irrational points). The question thus shows that
composition of Riemann integrable functions may not be Riemann integrable.
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