
MATH 2060B - HW 3 - Solutions1

1 (P.187 Q5). Let f(x) :=

{
x2 sin(1/x) x 6= 0

0 x = 0
and let g(x) := sin(x) for all x ∈ R.

a. Show that limx→0
f(x)
g(x) = 0

b. Show that limx→0
f ′(x)
g′(x) does not exist.

Solution.

a. For x 6= 0, we have f(x) = x2 sin(1/x) and g(x) = sin(x). Let J = (−r, r)\{0} (where r > 0) be
a deleted neighborhood of 0 such that g 6= 0 on J . Then we have on J ,∣∣∣∣f(x)

g(x)

∣∣∣∣ =
∣∣x2 sin(1/x)

∣∣sin(x) ≤
∣∣∣ x

sinx

∣∣∣|x|
Note that limx→0

∣∣ x
sin x

∣∣|x| = limx→0

∣∣ x
sin x

∣∣ limx→0 |x| = 1 · 0 = 0. The result then follows from
the Sandwich Theorem.

b. For x 6= 0, we have f ′(x) = 2x sin(1/x) − cos(1/x) by the chain rule and g′(x) = cos(x). Let
J ′ = (−r′, r′)\{0} (where r′ > 0) be a deleted neighborhood of 0 such that g′ 6= 0 on J . Then
we have on J ′,

f ′(x)

g′(x)
=

2x sin(1/x)

cosx
− cos(1/x)

cosx

Now take a sequence (xn) in J such that sin(1/xn) = 0, cos(1/xn) = 1 for all n ∈ N and xn → 0

(how?). Then f ′(xn)
g′(xn)

= −1/ cosxn.

By continuity of cosine function, we have limn f
′(xn)/g′(xn) = −1/ cos 0 = −1. Similarly,

take another sequence (yn) in J such that sin(1/xn) = 0, cos(1/xn) = −1 for all n ∈ N to-

gether with that xn → 0 (how?). Then f ′(xn)
g′(xn)

= 1/ cosxn. By continuity of cosine, we have

limn f
′(yn)/g′(yn) = 1/ cos 0 = 1. By sequential criteria, the limit in question does not exist.

Comment.

1. This exercise shows that the converse of the L’Hospital Rule is not true in general: let f, g :
(a, b)→ R be differentiable and let c ∈ (a, b) such that f(c) = g(c) = 0. Then the existence of
limx→c f(x)/g(x) does not imply the existence of limx→c f

′(x)/g′(x).

2. For part b, the existence of the limit is equivalent to considering only cos(1/x).

1Please feel free to email your TA at kllam@math.cuhk.edu.hk for any questions concerning homework.
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2 (P.196 Q10). Let h(x) :=

{
e−1/x

2

x 6= 0

0 x = 0
for all x ∈ R.

a. Show that h(n)(0) = 0 for all n ∈ N.

b. Suppose x 6= 0. Show that the remainder term obtained by applying the Taylor’s Theorem to the
points x, x0 := 0 and h as an n− times differentiable function does not converge to 0 as n→∞

Hint: Try to first show that limx→0 h(x)/xk = 0 for all k ∈ N by the L’Hospital Rule. The Leibniz’s
Rule, or the high-order product rule, may be useful to compute hn(x) for x 6= 0 and n ∈ N in the
process: let f, g : I → R be functions defined on an open interval I and n ∈ N. The Leibniz’s Rule
states that if f, g are n-times differentiable at x ∈ I, then the derivative of the product at x can be
computed by (fg)(n)(x) =

∑n
k=0

(
n
k

)
f (n−k)(x)gk(x).

Solution.

a. Following the hint, we first show that limx→0 h(x)/xk for all k ∈ N.

We proceed by induction. When n = 1: take f1(x) := 1/x and g(x) := e1/x
2

. Then f1, g are
differentiable on some deleted neighborhood of 0, say J := (−r, r)\{0} where r > 0. Furthermore

limx→0 g(x) = ∞ and g′(x) = −2x−3e1/x
2 6= 0 for all x ∈ J . Hence by the L’Hospital Rule, we

have

lim
x→0

h(x)

x
= lim
x→0

f1(x)

g(x)
= lim
x→0

f ′1(x)

g′(x)
= lim
x→0

−x−2

−2x−3e1/x2 = lim
x→0

1

2
xh(x) = 0

Set k ≥ 2. Now suppose limx→0 h(x)/xj = 0 for all 1 ≤ j < k. Take fn(x) := 1/xn for n ∈ N.
Then by the L’Hospital Rule, we have

lim
x→0

h(x)

xk
= lim
x→0

fk(x)

g(x)
= lim
x→0

f ′k(x)

g′(x)
= lim
x→0

−kx−k−1

−2x−3e1/x2 = lim
x→0

k

2

h(x)

xk−2
= lim
x→0

k

2

h(x)

xk−1
x = 0

where the last equality follows from the induction hypothesis.
Note that since taking limits respect product, sum and scalar multiplications, it follows readily
from the claim that limx→0 h(x)P (1/x) = 0 for all polynomials P with real coefficients.
Next, we claim that for all n ∈ N, there exists a polynomial Pn such that h(n)(x) = Pn(1/x)h(x)
for all x 6= 0. We proceed again by induction:
When n = 1, we have h′(x) = 2x−3e−1/x

2

= 2x−3h(x) = P1(1/x)h(x) for all x 6= 0 where
P1(t) := 2t3 is a real polynomial.
Let k ≥ 2. Now suppose for all j < k there exists polynomial Pj such that h(j)(x) = Pj(1/x)h(x)
for all x 6= 0. Then h(k)(x) = (h(k−1)(x))′ = (Pk−1(1/x)h(x))′ for all x 6= 0. By the product rule
and chain rule, we have for all x 6= 0

h(k)(x) = (Pk−1(1/x)h(x))′ = −1/x2P ′k−1(1/x)h(x) + Pk−1(1/x)h′(x)

= −1/x2P ′k−1(1/x)h(x) + Pk−1(1/x)P1(1/x)h(x)

= (−1/x2P ′k−1(1/x) + Pk−1(1/x)P1(1/x))h(x)

which is again the product of a polynomial (with variable 1/x) and h(x). Hence by induction,
for all n ∈ N, there exists polynomials Pn such that h(n)(x) = Pn(1/x)h(x) for all x 6= 0.
Lastly, we show that for all n ∈ N, h(n)(0) = 0. This is done again by induction: when n = 1, we
have

h′(0) = lim
x→0

h(x)− h(0)

x− 0
= 0

When n = k ≥ 2 where the induction hypothesis holds, we have

h(k)(0) = lim
x→0

h(k−1)(x)− hk−1(0)

x− 0
= lim
x→0

1

x
Pk−1(

1

x
)h(x) = 0

where Pk−1 is some polynomial. The result follows by induction.
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b. Suppose x 6= 0. By (i), the existence of h(n)(0) for all n ∈ N shows that h is a smooth function
on R. In particular, fixing n ∈ N, we have that h, · · · , h(n−1) are continuous on [0, x] and h(n) is
differentiable on (0, x). Hence, by the Taylor’s Theorem, there exists ξn ∈ (0, x) such that

h(x)− h(0) =

n−1∑
i=1

h(i)(0)

i!
xi +

h(n)(ξn)

n!
xn

By definition, the term h(n)(ξn)
n! xn is the remainder term. By (i), we have that h(x) = h(n)(ξn)

n! xn

for all n ∈ N. Hence the sequence of remainder terms (h
(n)(ξn)
n! xn) is a constant sequence (with

value h(x)). In particular limn
h(n)(ξn)

n! xn = h(x) = e−1/x
2 6= 0. Hence, the remainder term does

not converge to 0.

Comment.

1. The function h in this question is the standard example of a function that is infinitely dif-
ferentiable at a point but is not analytic at it (a function f : R → R is analytic at a point
p ∈ R if there exists some neighborhood of p on which the value of f and its Taylor’s series at
p coincides). You will learn more on that in the later part of the course.

2. Alternatively, one can show that limx→0 h(x)/xk for all k ∈ N by considering Taylor’s Theorem
on the exponential function:
Since the exponential function is smooth, for all k ∈ N and x > 0, by Taylor’s Theorem, there
exists ξ ∈ (0, x) such that the following inequality can be established.

ex =

k∑
n=0

xn

n!
+ eξ

xk+1

(k + 1)!
>

k∑
n=0

xn

n!
>
xk

k!

Hence for all x 6= 0, we have x−2 > 0. Therefore, ex
−2

> x−2k

k! for all k ∈ N, in particular, we
have

h(x)

xk
=
e−x

−2

xk
<

1

xk
k!

x−2k
= k!xk

for all k ≥ 1. It is then clear that limx→0
h(x)
xk = 0 by Squeeze Theorem.

3. To proceed after showing that limx→0
h(x)
xk = 0, one can instead apply induction to show that

limx→0
h(n)(x)
xk = 0 for all n, k ∈ N. In the progress, the nth order Leibniz’s Rule would be used

on h(n+1) by writing it as the nth derivative of h(1). This way, one does not have to identify
the form of h(n) like the solution above, and once such fact has been done the final result
that h(n)(0) = 0 is clear (by expanding whose definition with an induction proof). Interested
readers may try to find this alternative way doing the quesiton by following the above hints.

4. One cannot claim h(k)(0) = 0 by using limx→0 h
(k)(x) = 0 without first showing the continuity

of the latter at 0.
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