
MATH 2060B - HW 1 - Solutions1

1 (P.171 Q4). Let f : R→ R be defined by f(x) =

{
x2 x rational

0 x irrational
.

a. Show that f is differentiable at x = 0

b. Find f ′(0)

Solution.

a. By definition of differentiability, it suffices to verify the limit limx→0
f(x)−f(0)

x−0 = 0.
Let ε > 0. Take δ := ε > 0. Now suppose 0 < |x− 0| < δ. By definition of f , we have∣∣∣∣f(x)− f(0)

x− 0
− 0

∣∣∣∣ =
|f(x)|
|x|

≤
max{

∣∣x2∣∣, 0}
|x|

= |x| < δ = ε

Hence by the ε− δ definition, the limit is verified.

b. By definition, the derivative at x = 0 is given by

f ′(0) = lim
x→0

f(x)− f(0)

x− 0

Hence, f ′(0) = 0 by the first part.

Comment.

a. It is not accepted to compute lim
x→0
x∈Q

f(x)− f(0)

x− 0
and lim

x→0
x/∈Q

f(x)− f(0)

x− 0
and claim the existence of

the limit in question without verifying why the equality between them gives the answer.

b. -

1Please feel free to email your TA at kllam@math.cuhk.edu.hk for any questions concerning homework.
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2 (P.171 Q10). Let g : R→ R be defined by g(x) =

{
x2 sin

(
1/x2

)
x 6= 0

0 x = 0
.

a. Show that g is differentiable for all x ∈ R.

b. Show that the derivative g′ is not bounded on the interval [−1, 1]

Solution.

a. Case 1: Suppose x 6= 0. Let I ⊂ R be an open interval such that x ∈ I but 0 /∈ I. Define
f1, f2, f3 : I → R by f1(t) = t2, f2(t) = 1/t2, f3(t) = sin

(
1/t2

)
. Note that g = f1 · f3 on

I. It suffices to show that f1 · f3 is differentiable at x. By product rule, it remains to show
f1 and f3 are differentiable at x individually. Since f1 is a polynomial from an open set, the
result is clear. For f3, note that f3(t) = sin(f2(t)) for t ∈ I. Since x 6= 0, f1(x) 6= 0. By
quotient rule, since f1 is differentiable at x,f2(t) = 1/f1(t) is differentiable at x. Furthermore
since t 7→ sin(t) is differentiable everywhere on R, it is differentiable at f2(x) = 1/x2. By chain
rule, f3(t) = sin(f2(t)) is differentiable at x.
Case 2: Suppose x = 0. Then for all t 6= 0, we have∣∣∣∣g(t)− g(0)

t− 0

∣∣∣∣ =
∣∣t sin

(
1/t2

)∣∣ ≤ |t|
By the sandwich theorem, since limt→0 |t| = 0, we have limt→0

∣∣∣ g(t)−g(0)t−0

∣∣∣ = 0, which implies

limt→0
g(t)−g(0)

t−0 = 0. By definition of differentiability, g is differentiable at x = 0.

b. By chain rule and product rule, we can compute that g′(x) =

{
2x sin

(
1/x2

)
− 2x−1 cos

(
1/x2

)
x 6= 0

0 x = 0

Now consider the sequence defined by xn := 1/
√

2nπ for all n ∈ N. Then for all n ∈ N, we have
xn ∈ [−1, 1], sin

(
1/x2n

)
= 0 and cos

(
1/x2n

)
= 1. Hence, g′(xn) = −2

√
2nπ for all n ∈ N and

limn g
′(xn) = −∞. Therefore, (g′(xn)) is an unbounded sequence. It is easy to see that the

existence of such sequence contradicts the boundedness of g′ on the interval in question.

Comment.

a. Differentiability is a local behavior. To check against differentiability at a point, it usually suffices
to restrict the function domain to an open interval (or open neighborhood) containing the point.
This principle is used in the solution to the case x 6= 0.

b. The boundedness of g′(x) on [−1, 1] is equivalent to the boundedness of 2x−1 cos
(
1/x2

)
there. It

is incorrect to verify the boundedness of the latter by stating x−1 is unbounded while cos
(
1/x2

)
is bounded and hence their product is unbounded. Consider simply x−1 and x. The former is
unbounded on [−1, 1] while the latter is bounded on [−1, 1], but their product, which is a constant
function, is still bounded.
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3 (P.171 Q13). Let f : R→ R be a real-valued function and c ∈ R.

a. Suppose f is differentiable at c. Show that f ′(c) = lim
n→∞

(n(f(c+ 1/n)− f(c)))

b. Show with an example of f that the existence of sequential limit in part(a) does not imply the
existence of f ′(c).

Solution.

a. Note that we have f ′(c) = limh→0
f(c+h)−f(c)

h . By sequential criteria of limit, as limn 1/n = 0,

we have f ′(c) = limn
f(c+1/n)−f(c)

1/n = limn(n(f(c+ 1/n)− f(c))).

b. Here we give 2 examples.

Example 1: Take f(x) = |x| defined on R and c = 0. It is standard that f is not differen-
tiable at c (for example by considering both right-hand and left-hand limits). However, we still
have limn n(f(c+ 1/n)− f(c)) = limn n(|1/n| − |0|) = limn n/n = 1.

Example 2: Let A := {1/n | n ∈ N} ∪ {0}. Take f to be the characteristic function of A, χA,

that is, χA(x) =

{
1 x ∈ A
0 x /∈ A

and take c = 0. It is clear that f is not continuous at 0 and hence

not differentiable at 0. However, we have limn n(f(0 + 1/n) − f(0)) = limn n(f(1/n) − f(0)) =
limn n(1− 1) = 0.

Comment.

a. Sequential criteria is the keyword.

b. The above Example 1 demonstrate the importance of computing limits in all (2) directions.
Besides the absolute value function, functions like the floor and ceiling are also counterexamples.
Example 2 demonstrates instead the importance of having enough points to verify convergence:
it is too weak to imply the existence of a limit by approaching with just 1 sequence. Functions
like the one in Question 1 give good counterexamples as well.
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