
MATH 2060B - Home Test 3

Suggested Solutions(It does not reflect the marking scheme)

1. (15 points)

Let f(x) :=

∞∑
n=1

xn(1− x). Let D := {x ∈ R : f(x) is convergent}.

(a) Find D.

(b) Does f(x) converge uniformly on D?

Solution.

(a) D = (−1, 1]. For each n ∈ N, put

un(x) = xn(1− x) and hence f(x) =

∞∑
n=1

un(x).

Consider the following cases:

• If x = 0 or x = 1, then un(x) = 0 for all n ∈ N. Hence f(x) is convergent.

• If 0 < |x| < 1 or |x| > 1, then

lim
n→∞

∣∣∣∣un+1(x)

un(x)

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1(1− x)

xn(1− x)

∣∣∣∣ = |x|.

Hence the Ratio Test implies that f(x) is (absolutely) convergent if 0 < |x| < 1 and f(x)
is divergent if |x| > 1.

• If x = −1, then un(x) = 2(−1)n, which does not converge to 0. The n-th Term Test
implies that f(x) is divergent.

Combining the above observations, we have D = (−1, 1].

Remark. It is not enough to show that f(x) is convergent for x ∈ (−1, 1]. This only implies that
(−1, 1] ⊆ D. We should also show that f(x) is divergent for x /∈ (−1, 1].

(b) f does not converge uniformly on D. We compute the pointwise limit of f on D:

• If x ∈ (−1, 1), then

f(x) =

∞∑
n=1

xn(1− x) = (1− x) ·
∞∑
n=1

xn = (1− x) · x

1− x
= x.

• If x = 1, then f(x) = 0.

Notice that each un is continuous on D. If f converges uniformly on D, then f is also continuous
on D. However,

lim
x→1−

f(x) = lim
x→1−

x = 1 6= 0 = f(1).

This is a contradiction.

Comment.

• For (a), many students write

f(x) =

∞∑
n=1

xn(1− x) = (1− x)

∞∑
n=1

xn

and claim that f(x) is convergent if and only if
∑
xn is convergent. Notice that we can only

pull out the factor (1− x) when the infinite sum is convergent. This argument is not valid.

• For (a), be careful that the terms cannot be zero if we want to apply the Ratio Test. Many
students did not aware that un(0) = un(1) = 0 and apply Ratio Test to these two special
cases.
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2. (15 points)

Let g be a real analytic function on R.

(a) Suppose that there is δ > 0 such that g(x) = 0 for all x ∈ (−δ, δ). Show that g ≡ 0 on R.
(Hint: Consider the set {r > 0 : g ≡ 0 on (−r, r)}.)

(b) Show that if
∫ b
a
|g(x)|dx = 0 for some a < b, then g(x) ≡ 0 on R.

Solution.

(a) We prove by contradiction. Suppose it were true that g 6≡ 0 on R. Denote E := {r > 0 :
g = 0 on (−r, r)}. Then E is non-empty by the assumption. Furthermore, it is bounded since
otherwise we would have g ≡ 0 on R. By the Axiom of completeness, we have R := supE <∞.
In fact we also have R ≥ δ > 0.
Next, we claim that g is locally constantly zero at R, that is, there exists r > 0 such that g(x) = 0
for all x ∈ (−r +R,R+ r). There are two ways to proceed.
Method 1: Computing Taylor’s coefficients
First, we claim that R ∈ E, that is g ≡ 0 on (−R,R). Suppose not. There exists ξ ∈ (−R,R)
such that g(ξ) 6= 0. Note |ξ| < R. Then by definition of supremum, there exists r ∈ E such that
|ξ| < r. It follows the g(ξ) = 0 as ξ ∈ (−r, r). Contradiction arises. Therefore g ≡ 0 on (−R,R).
Note that it then follows that g(k) ≡ 0 on (−R,R). Since g is analytic on R, it is smooth on R.
It follows that g(k) are continuous on R, in particular at R. Hence, it follows that g(k)(R) = 0
for all k ∈ N. Since g is analytic at R, there exists δ+ > 0 such that

g(x) =

∞∑
n=0

an(x−R)n

for all x ∈ (−δ+ +R, δ+R) where an = f (n)(R)/n!. It follows from previous computations that
an = 0 for all n ∈ N. Therefore, g(x) = 0 for all x ∈ (−δ+ + R, δ+R). It follows by definition
that g is locally constantly zero at R.

Method 2: Considering the order of zeros
Since g is analytic on R, g is analytic at R. Hence there exists r > 0 and a real sequence (an)
such that

g(x) =

∞∑
n=0

an(x−R)n

for all x ∈ (−r +R,R+ r). We proceed to claim that an = 0 for all n ∈ N.
Suppose not. Then {j ∈ N ∪ {0} : aj 6= 0} 6= φ. We take N := min{j ∈ N : aj 6= 0} by the
well-ordering principle. From the minimality of N , we have

g(x) =

∞∑
n=0

an(x−R)n =

∞∑
n=N

an(x−R)n = (x−R)N
∞∑
n=N

an(x−R)n−N

= (x−R)N
∞∑
n=0

an+N (x−R)n

for all x ∈ (−r+R,R+ r). Now write h : (−r+R,R+ r)→ R by h(x) :=
∑∞
n=0 an+N (x−R)N .

Note that the series defining h converges since it is just a scalar multiple of that of g pointwise,
except maybe at R at which h(R) = aN is clearly defined. It follows that h is well-defined. We
then have the equality

g(x) = (x−R)Nh(x)

for all x ∈ (−r+R,R+ r). Since h is a power series at R, it follows that h is a smooth function
and so continuous at R. Note h(R) = aN 6= 0. It follows that there exists ρ > 0 such that h 6= 0
on (−ρ+R,R+ ρ) by continuity. Further (x−R)N 6= 0 for all x ∈ (−ρ+R,R+ ρ)\{R} clearly.
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It follows that g(x) 6= 0 for all x ∈ (−ρ + R,R + ρ)\{R}. However, the definition of R tells us
that g(x) = 0 for all x ∈ (−η, η) where 0 < η < R. Contradiction arises.
Therefore, it must then be the case that an = 0 for all n ∈ N. Hence g(x) =

∑∞
n=0 an(x−R)n = 0

for all x ∈ (−r +R,R+ r) for some r > 0, that is g is locally constantly zero at R.

Now we have shown that g is locally constantly zero at R (and so at −R with similar proof).
Finally, we proceed to the last step:
let r1, r2 > 0 be such that g ≡ 0 on (−r1 −R, r1 −R) and (−r2 +R, r2 +R) respectively. Take
r := min{r1, r2}. It follows clearly that R+ r ∈ E, which contradicts R being the supremum of
E. .
Therefore it must be the case that E is unbounded and g(x) = 0 for all x ∈ R.

(b) Suppose
∫ b
a
|g(x)|dx = 0 for some a < b. Note that g is analytic on (a, b) and so is continuous

on (a, b). It follows that |g| is non-negative continuous on (a, b). By Homework 4, Question 2,
it follows that |g|(x) := |g(x)| = 0 for all x ∈ (a, b). Hence, g(x) = 0 for all x ∈ (a, b). Now
write c := a+b

2 to be the mid-point of (a, b) and r := c−a = b− c > 0 the radius. It follows that
(a, b) = (−r+ c, r+ c). Note that the translated function h : R→ R defined by h(x) := g(x+ c)
is analytic by considering power series expansion of g with a simple substitution (with details
to be filled by readers). Furthermore, h vanishes (= 0) on (−r, r). Hence, by part (a), it follows
that h ≡ 0 on R, which implies clearly that g ≡ 0 on R.

Comment.

• Part (a) is a kind of extension problem: you are asked to extend the vanishing of the function
g in a neighborhood of the origin to the entire real line. In general, extensions are made in
the ”boundary” of the original domain. That is why we consider the supremum of the set in
the hint. If we consider instead some points in the interor of the neighborhood instead like
x0 ∈ (−δ, δ), there is usually no result (for if we consider analyticity at x0, the Taylor series
may still work only in (−δ, δ) if the radius of convergence is small).

• In Part (a), Method 2 in fact shows that zeros of an analytic function either are isolated or
gives locally constantly zero neighborhood, that is, if g(x) = 0 for some x ∈ R and g analytic on
R, then either g ≡ 0 on (−r+x, r+x) for some r > 0, or g 6= 0 anywhere on (−r+x, r+x)\{x}
for some r > 0. The same is true if R is replaced by C and is an extremely important result
in complex analysis on analytic (or holomorphic) functions.

• The first part of Part (b) about integrals basically follows from Assignment 4, Question 2.
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3. (20 points)

For each a ∈ R, put

a+ =

{
a, if a > 0,

0, otherwise,
and a− =

{
−a, if a < 0,

0, otherwise.

(a) Suppose that the series
∑
an is conditionally convergent, that is, the series

∑
an is convergent

but
∑
|an| =∞. Show that

∑
a+n =

∑
a−n =∞.

(b) Consider an := (−1)n+1

n for n = 1, 2, .... Show that there is a bijection σ on Z+ such that
lim inf sn = 0 and lim sup sn = 1, where sn :=

∑n
k=1 aσ(k).

Solution.

(a) First, note that we have the following equalities: for all a ∈ R,

a+ + a− = |a| (1)

a+ − a− = a (2)

Now suppose the contrary. Then either
∑
a+n < ∞ or

∑
a−n < ∞. (Note that (a+n ) and (a−n )

are sequences of non-negative number. Therefore by the Bounded Monotone Convergence, the
corresponding series either exists or diverges to ∞.) Without loss of generality, we suppose∑
a+n < ∞. Since we have a−n = an − a+n for all n ∈ N, by linearity of convergent series, it

follows that
∑
n a
−
n =

∑
n an −

∑
n a

+
n exists. Hence, it follows that

∑
n |an| =

∑
n a

+
n +

∑
n a
−
n

converges. However, we have
∑
n |an| =∞ by assumption. Contradiction arises.

(b) First, by the alternating series test,
∑
an is convergent. On the other hand

∑
|an| diverges since

it gives the harmonic series. It follows that
∑
n an converges conditionally. Write (xn := a2n−1)

the sequence of positive terms and (yn := a2n−1) the sequence of negative terms.
Since

∑
an converges conditionally, it follows from part (a) that

∑
xn =

∑
a+n = ∞ and∑

yn = −
∑
a−n = −∞.

Next we proceed to construct the required rearrangement.
Take s1 := min{j ∈ N :

∑j
k=1 xk > 1}. This is well-defined because we have

∑
xn =∞.

If s1 = 1, then we have
xs1 ≥ xs1 − 1 ≥ 0

Otherwise, by the minimality of s1, we have

s1∑
k=1

xk > 1 ≥
s1−1∑
k=1

xk

In any case, we have

xs1 ≥
s1∑
k=1

xk − 1 ≥ 0

Then we take t1 := min{j ∈ N :
∑s
k=1 1xk +

∑j
k=1 yj ≤ 0}. This is again well-defined (from∑

yn = −∞) and similarly we have

0 ≥
s1∑
k=1

xk +

t1∑
k=1

yk ≥ yt1

where the second inequality follows from the minimality of t1.
Then we proceed to define s2 := min{j ∈ N :

∑j
k=s1+1 xk +

∑s1
k=1 xk +

∑t1
k=1 yk > 1} and
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t2 := min{j ∈ N :
∑j
k=t1+1 yk +

∑s2
k=1 xk +

∑t1
k=1 yk < 0}; by repeating the process in general

we have two strictly increasing seqeunce (sn) and (tn) defined by

sn := min{j ∈ N :

j∑
k=sn−1+1

xk +

sn−1∑
k=1

xk +

tn−1∑
k=1

yk > 1}

tn := min{j ∈ N :

j∑
k=tn−1+1

xk +

sn∑
k=1

xk +

tn−1∑
k=1

yk > 1}

for all n ≥ 2. It follows from the minimality that we have

xsn ≥
sn∑
k=1

xk +

tn−1∑
k=1

yk − 1 ≥ 0 (1)

and

0 ≥
sn∑
k=1

xk +

tn∑
k=1

yk ≥ ytn (2)

for all n ≥ 2 y.
Next we define the a function σ : N+ → N+ by

σ(i) :=

{
2((i− tn − sn) + tn)− 1 ; tn + sn + 1 ≤ i ≤ tn+1 + sn

2((i− tn − sn) + sn) ; tn+1 + sn + 1 ≤ i ≤ tn+1 + sn+1

for all tn+sn+1 ≤ i ≤ tn+1+sn+1 for all n ∈ N where t0 = s0 := 0. This function is well-defined
on the domain because we have (sn) and (tn) being strictly increasing; we leave it to the readers
to show its bijectivity and so σ is really a permutation. Note that the permuted sequence is
given by

aσ(i) :=

{
x(i−tn−sn)+tn ; tn + sn + 1 ≤ i ≤ tn+1 + sn

y(i−tn−sn)+sn ; tn+1 + sn + 1 ≤ i ≤ tn+1 + sn+1

for all tn+ sn+ 1 ≤ i ≤ tn+1 + sn+1 for all n ∈ N, which consists of alternative blocks of positive
and negative terms of the original sequence. Furthermore, if we sum from the beginning of the
permuted sequence, when we finish summing up a block of positive terms, the sequence is just
over 1 (as indicated from the minimality of (sn)) and when we finish summing up a block of
negative terms, the sequence is just below 0 (as indicated from the minimality of (tn)).
Rewriting the previous inequalities (1) and (2) in terms of the permutation, we have

xsn ≥
M(n)∑
k=1

aσ(k) − 1 ≥ 0 (1’)

where aσ(M(n)) = xsn for all n ≥ 2

0 ≥
m(n)∑
k=1

aσ(k) ≥ ytn (2’)

where aσ(m(n)) = ytn for all n ≥ 2.

5



Lastly, we show that σ is the required permutation. Write sn :=
∑n
k=1 aσ(k). Note that from

the construction that for all n ∈ N we have

sup
k≥n

sk = sup
k≥n

aσ(k)=xsi for some i

sk (3)

and
inf
k≥n

sk = inf
k≥n

aσ(k)=yti for some i

sk (4)

that is, when dealing with the supremum, we only need to consider when the summand finish
summing up a positive block; and when dealing the the infermum, we only need to consider
when the summand finish summing up a negative block.
Furthermore, as

∑
n an converges, we have lim an = 0. It follows by considering subsequences

that limn xsn = limn ytn = 0. It then follows from (1’), (2’), (3), (4) and the squeeze theorem
that lim supn sn = 1 and lim inf sn = 0.

Comment.

• For part (b), despite the technicality of the above solution, the more crucial main idea is to
have a permuted sequence consisting of alternative blocks of positive and negative terms of
the original sequence such that the partial sum is just above 1 (resp. below 0) when we finish
summing up a block of positive terms (resp. negative terms).

• Readers may read Chapter 3 of Principle of Mathematical Analysis, 3rd edition, McGraw Hill
by Rudin Walter (1976) (or the so-called Baby Rudin) for a textbook proof of Question 3.
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