
MATH 2060B - Home Test 2

Suggested Solutions(It does not reflect the marking scheme)

1. (15 points)

Let f be a C1-function defined on (0,∞). For x ∈ R, let [x] denote the greatest integer not
greater than x.

(i) Show that if a and b are positive integers with a < b, then

b∑
k=a

f(k) =

∫ b

a

f(x)dx+

∫ b

a

f ′(x)(x− [x]− 1

2
)dx+

f(a) + f(b)

2
.

(ii) Show that if p 6= 1, then
n∑

k=1

1

kp
=

1

np−1
+ p

∫ n

1

[x]

xp+1
dx.

Solution.

(i) Consider the integrals on the right hand side of the equation:∫ b

a

f(x)dx+

∫ b

a

f ′(x)(x− [x]− 1

2
)dx =

b−1∑
k=a

∫ k+1

k

[
f(x) + f ′(x)(x− [x]− 1

2
)

]
dx

We need to calculate the sum of

Ak =

∫ k+1

k

[
f(x) + f ′(x)(x− [x]− 1

2
)

]
dx.

Notice that [x] = k for all x ∈ [k, k + 1] only except for x = k + 1. Hence

Ak =

∫ k+1

k

(f(x) + xf ′(x))dx− (k +
1

2
)

∫ k+1

k

f ′(x)dx.

By the product rule, [xf(x)]′ = f(x) +xf ′(x). Then apply the Fundamental Theorem of
Calculus, we have

Ak =

[
xf(x)− (k +

1

2
)f(x)

]x=k+1

x=k

=
1

2
f(k + 1) +

1

2
f(k).

It follows that

b−1∑
k=a

Ak =

b−1∑
k=a

(
1

2
f(k + 1) +

1

2
f(k)

)
=

1

2
f(a) + f(a+ 1) + · · ·+ f(b− 1) +

1

2
f(b).

Hence we have

b∑
k=a

f(k) =

(
1

2
f(a) + f(a+ 1) + · · ·+ f(b− 1) +

1

2
f(b)

)
+
f(a) + f(b)

2

=

∫ b

a

f(x)dx+

∫ b

a

f ′(x)(x− [x]− 1

2
)dx+

f(a) + f(b)

2

1



(ii) If n = 1, then both sides of the equation equal to 1. If p = 0, then both sides of the equation
equal to n. It remains to show the cases n > 1 and p 6= 0, 1. Consider the function defined by
f(x) = 1/xp, which is C1 on (0,∞). Note that

f ′(x) = −p · 1

xp+1
, ∀x ∈ (0,∞).

Using (i), we have

n∑
k=1

1

kp
=

∫ n

1

1

xp
dx− p

∫ n

1

1

xp+1
(x− [x]− 1

2
)dx+

1 + 1/np

2
.

We proceed to calculate∫ n

1

1

xp
dx− p

∫ n

1

1

xp+1
(x− 1

2
)dx = (1− p)

∫ n

1

1

xp
dx+

p

2

∫ n

1

1

xp+1
dx.

Notice that we have

I1 :=

∫ n

1

1

xp
dx =

[
− 1

p− 1
· 1

xp−1

]x=n

x=1

=
1

1− p
·
(

1

np−1
− 1

)

I2 :=

∫ n

1

1

xp+1
dx =

[
− 1

p
· 1

xp

]x=n

x=1

= −1

p

(
1

np
− 1

)
Hence ∫ n

1

1

xp
dx− p

∫ n

1

1

xp+1
(x− 1

2
)dx = (1− p) · I1 +

p

2
· I2 =

1

np−1
− 1

2
· 1

np
− 1

2
.

Finally, combining everything gives

n∑
k=1

1

kp
=

(
1

np−1
− 1

2
· 1

np
− 1

2

)
+ p

∫ n

1

[x]

xp+1
dx+

1

2
+

1

2
· 1

np

=
1

np−1
+ p

∫ n

1

[x]

xp+1
dx

Comment. For (i), the basic idea is integration by part:∫ b

a

xf ′(x)dx =
[
xf(x)

]x=b

x=a
−
∫ b

a

f(x)dx

However, a rigorous proof is required as it did not appear in the lecture nor the tutorial. The key
is to make use of the product rule and the Fundamental Theorem of Calculus. For (ii), we need to
specify that the function f(x) = 1/xp is C1 on (0,∞) before applying the previous part. Also, the
case n = 1 is not included and has to be checked separately. Finally, the case p = 0 needs special
attention. Note that∫ n

1

1

xp+1
dx =

[
ln(x)

]x=n

x=1
if p = 0;

∫ n

1

1

xp+1
dx =

[1

p
· 1

xp

]x=n

x=1
if p 6= 0, 1.
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2. (15 points)

Let (fn) be a sequence of bounded functions defined on R. Suppose that f(x) := lim fn(x)
exists for all x ∈ R.

(i). Show that

lim
n

f1(x) + · · ·+ fn(x)

n
= f(x)

for all x ∈ R.

(ii). If we further assume that (fn) converges uniformly to f on R, does it imply that the sequence

(
f1 + · · ·+ fn

n
) converges uniformly to f on R ?

Solution.

(i.) We first show a weaker result by considering converging sequences of real numbers that con-
verge to 0, that is, we first show that if (xn) is a sequence of real numbers such that limn xn = 0.
Then cn := 1

n

∑n
i=1 xi converges to 0.

Let ε > 0. Then there exists N1 ∈ N such that |xi| < ε for all n ≥ N1. Furthermore by the

Archimedean Principle, there exists N2 ∈ N such that 1
N2

< ε/max{1,
∑N1

i=1 |xi|}.
Next, we take some N ∈ N with N ≥ N1, N2. Then for all n ≥ N , we have∣∣∣∣∣ 1n

n∑
i=1

xi − 0

∣∣∣∣∣ =

∣∣∣∣∣ 1n
(

N1∑
i=1

xi +

n∑
i=N1+1

xi

)∣∣∣∣∣ ≤ 1

n

N1∑
i=1

|xi|︸ ︷︷ ︸
:=(I)

+
1

n

n∑
i=N1+1

|xi|︸ ︷︷ ︸
:=(II)

Then by the choice of N1, N2, we have that

(I) :=
1

n

N1∑
i=1

|xi| ≤
1

N2

N1∑
i=1

|xi| ≤
1

N2
max{1,

N1∑
i=1

|xi|} < ε

(II) :=
1

n

n∑
i=N1+1

|xi| ≤
1

n

n∑
i=N1+1

ε =
n−N1

n
ε ≤ ε

It then follows that ∣∣∣∣∣ 1n
n∑

i=1

xi − 0

∣∣∣∣∣ ≤ (I) + (II) ≤ 2ε

for all n ≥ N (where the values of (I), (II) depends on n). Hence, by definition, we have
limn

1
n

∑n
i=1 xi = 0.

With a bit more effort we can strengthen the result to the case in question. Let (fn) be a
sequence of (bounded) functions on R such that fn → f pointwise to some function f on R.
Then we fix x ∈ R and define yn : fn(x) − f(x) for all n ∈ N. Then it is clear that (yn) is a
sequence of real numbers converging to 0. Note that for all n ∈ N, we have

1

n

n∑
i=1

yi =
1

n

n∑
i=1

fi(x)− 1

n

n∑
i=1

f(x) =
1

n

n∑
i=1

fi(x)− f(x)

By the weaker case it follows that limn
1
n

∑n
i=1 fi(x) − f(x) = 0 and so limn

1
n

∑n
i=1 fi(x) =

f(x) by the sum law of limit for all x ∈ R.
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(ii.) Yes. The form of the proof is exactly the same as that in part (a). In the following, we write
‖g‖∞ := supx∈R |g(x)| whenever g is a bounded function.
First we leave it to the readers to show that ‖·‖∞ has the following properties:

(a) For all λ ∈ R and g bounded, we have ‖λg‖∞ = |λ|‖g‖∞. (Scalar Homogeneity)

(b) For all g1, g2 bounded, we have ‖g1 + g2‖∞ ≤ ‖g1‖∞+‖g2‖∞ (which implies that g1 + g2
is bounded as well). (Triangle Inequality)

Then we proceed to the proof of the question.

Let ε > 0. Then there exists N1 ∈ N such that ‖fn‖∞ = ‖fn − 0‖∞ < ε for all n ≥ N1

since (fn) converges uniformly to 0. Furthermore by the Archimedean Principle, there exists

N2 ∈ N such that 1
N2

< ε/max{1,
∑N1

i=1 ‖fi‖∞}.
Next, we take some N ∈ N with N ≥ N1, N2. Then for all n ≥ N , we have∥∥∥∥∥ 1

n

n∑
i=1

fi − 0

∥∥∥∥∥
∞

=

∥∥∥∥∥ 1

n

(
N1∑
i=1

fi +

n∑
i=N1+1

fi

)∥∥∥∥∥
∞

≤ 1

n

N1∑
i=1

‖fi‖∞︸ ︷︷ ︸
:=(I)

+
1

n

n∑
i=N1+1

‖fi‖∞︸ ︷︷ ︸
:=(II)

by both the scalar homogeneity and triangle inequality of ‖·‖∞. Then by the choice of N1, N2,
we have that

(I) :=
1

n

N1∑
i=1

‖fi‖∞ ≤
1

N2

N1∑
i=1

‖fi‖∞ ≤
1

N2
max{1,

N1∑
i=1

‖fi‖∞} < ε

(II) :=
1

n

n∑
i=N1+1

‖fi‖∞ ≤
1

n

n∑
i=N1+1

ε =
n−N1

n
ε ≤ ε

It then follows that ∥∥∥∥∥ 1

n

n∑
i=1

fi − 0

∥∥∥∥∥
∞

≤ (I) + (II) ≤ 2ε

for all n ≥ N (where the values of (I), (II) depends on n). Hence, by definition, we have
limn

∥∥ 1
n

∑n
i=1 fi

∥∥
∞ = 0, which follows that 1

n

∑n
i=1 fi converges uniformly to 0.

For the general case, suppose (fn) is a sequence of bounded function converging to f uniformly.
Then limn ‖fn − f‖∞ = 0. Define gn : fn − f for all n ∈ N. Since f is in fact a bounded
function as it is the uniform limit for a sequence of bounded functions (see the proof in Question
3, Assignment 6), it follows from the triangle inequality of ‖·‖∞ that (gn) is a sequence of
bounded functions with limn ‖gn‖∞ = 0, that is, (gn) converges to 0 uniformly. Note that for
all n ∈ N, we have

1

n

n∑
i=1

gi =
1

n

n∑
i=1

fi −
1

n

n∑
i=1

f =
1

n

n∑
i=1

fi − f

By the weaker case it follows that limn

∥∥ 1
n

∑n
i=1 fi − f

∥∥
∞ = limn

∥∥ 1
n

∑n
i=1 gi

∥∥
∞ = 0 and so

(
∑n

i=1 fi) converges to f uniformly on R.
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Comment.

1. Let (xn) be a sequence of real numbers. Then we call (xn) to be Cesaro summable if
( 1
n

∑n
i=1 xi) converges. Part (i) shows that convergence of a sequence is stronger than the

notion of Cesaro summable. In fact the latter is strictly weaker by considering the alternating
sequence ((−1)n), which is Cesaro summable but not converging.

2. The idea of the proof(s) is to truncate the Cesaro sum to two parts where the first (large) part
can be regulated by the denominator n while the later part is small due to the convergence of
the sequence.

3. For Part (i), in the regulation of the first large part,
∑N1

i=1 |xi| , we chose N2 ∈ N such that
1
N2

< ε/max{1,
∑N1

i=1 |xi|}. Alternatively, one may choose N2 ∈ N such that we have instead

1

N2
< ε/max{1, N1 · sup

1≤i≤N1

|xi|}

The same is true for part (ii) with ‖fi‖∞ replacing |xi|

4. We should emphasize that the two proofs are essentially the same. This is due to the similarity
between |·| for real numbers and ‖·‖∞ for bounded functions. In fact, the proof is valid in any
normed space.

5. Following (4), nonetheless, one should give the proof details for BOTH parts instead of sim-
plying writing that the proofs are similar. Otherwise, marks would be deducted. After all,
this is an assessment and we expect you to show to us your concrete understanding on the
subject.
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3. (20 points)

Let f be a continuous function defined on [a, b]. Assume that the right derivative of f exists

for every x ∈ (a, b), that is, the limit f ′+(x) := lim
t→0+

f(x+ t)− f(x)

t
exists.

(i) If f(b) < f(a), we define a function h : (f(b), f(a))→ R by

h(y) := sup{x ∈ (a, b) : f(x) > y}.

Show that f(h(y)) = y for all y ∈ (f(b), f(a)).

(ii) Let D := {x ∈ (a, b) : f ′+(x) > 0}. Show that if (a, b) \D is countable, then f is increasing.

Solution.

i. First we show that h is well defined. For all y ∈ (f(b), f(a)), write Ey := {x ∈ (a, b) : f(x) > y}.
Then h(y) = supEy by definition. We need to show that Ey is non-empty for all y ∈ (f(b), f(a)).
This is due to the Intermediate Value Theorem: fix y ∈ (f(b), f(a)). Then we pick some
z ∈ (y, f(a)) ⊂ (f(b), f(a)). Then there exists xz ∈ (a, b) such that f(xz) = z > y since f is
continuous on [a, b]. It follows that z ∈ Ey and so Ey is non-empty and h is well-defined by the
Axiom of Completeness.

Next, we leave it an exercise that h(y) ∈ [a, b] so f(h(y)) makes sense for any y ∈ (f(b), f(a)).
(In fact the proof is similar to what comes next).

Then, we show that f(h(y)) ≥ y for all y ∈ (f(b), f(a)).
Fix y ∈ (f(b), f(a)). By the definition of supremum, it follows that there exists a sequence (xn)
in Ey such that limn xn = supEy = h(y). Since xn ∈ Ey for all n ∈ N, f(xn) > y for all n ∈ N.
It follows by continuity of f at h(y) ∈ [a, b] that f(h(y)) = limn f(xn) ≥ y.

Finally, we show that f(h(y)) ≤ y. Suppose not. We have f(h(y)) > y. Note that h(y) 6= b
otherwise f(h(y)) = f(b) < y which contradicts to the last paragraph. Hence, h(y) ∈ [a, b).
Since f(h(y)) > y, by continuity of f at h(y), it follows that there exists 0 < r such that
f(z) > y on (h(y) − r, h(y) + r) ∩ [a, b]. By taking some z ∈ [a, b] such that 0 < z − h(y) < r
and 0 < z − h(y) < b − h(y) (why is it possible?), it follows that z > h(y) and z ∈ Ey, which
contradicts to the fact that h(y) = supEy. Hence it must follow that f(h(y)) ≤ y and so
f(h(y)) = y together with f(h(y)) ≥ y for all y ∈ (f(b), f(a)).

ii. We proceed to prove its contrapositive. Suppose f is not increasing. Then there exists s < t
where s, t ∈ [a, b] such that f(s) > f(t). WLOG, we can assume s, t ∈ (a, b) by continuity of f
on [a, b] (why?). Let h : (f(t), f(s)) → R be defined by h(y) := {x ∈ (s, t) : f(x) > y} for all
y ∈ (f(t), f(s)). It is clear that f is continuous on [s, t] (with right derivatives existing on (s, t),
which was not used in the proof of part (i)). Hence, by part (i), it follows that h is well-defined
and f(h(y)) = y for all y ∈ (f(t), f(s)).

First, we show that f ′+(h(y)) ≤ 0 and so h(y) /∈ D for all y ∈ (f(t), f(s)).
Fix y ∈ (f(t), f(s)). Then by the definition of supremum, we have f(z) ≤ y for all z > h(y) and
z ∈ (s, t) and so for all z ∈ (h(y), t), which is non-empty as h(y) < t (why?)).
Hence, for all z ∈ (h(y), t), we have

f(z)− f(h(y))

z − h(y)
=
f(z)− y
z − h(y)

≤ 0

as f(z) ≤ y. It follows that

f ′+(h(y)) := lim
z→h(y)+

f(z)− f(h(y))

z − h(y)
≤ 0

and so h(y) /∈ D for all y ∈ (f(t), f(s)).
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Next, we show that {h(y)}y∈(f(t),f(s)) contains distinct elements, that is, h is injective.
Suppose h(y1) = h(y2) for some y1, y2 ∈ (f(t), f(s)). Then by part (i), we have that
y1 = f(h(y1)) = f(h(y2)) = y2. By definition, h is injective.

Lastly, we show that {h(y)}y∈(f(t),f(s)) is uncountable and so (a, b)\D is uncountable, which is
what we want from the contrapositive argument. This follows from the fact that (f(s), f(t)) is
an interval and so is of uncountably element by the Cantor Diagonal Theorem. By considering
the injective map h : (f(t), f(s)) → [s, t]\D ⊂ (a, b)\D, it follows that {h(y)}y∈(f(t),f(s)) =
h((f(t), f(s))) is uncountable and so its superset (a, b)\D is of uncountably many element .

Comment.

1. The proof of Q3i does NOT require the existence of left derivatives for f ; only the continuity
assumption of f has been used.

2. A set is uncountable if and only if it is not countable. Unlike the subsets Q and Qc of R, the
uncountability of the complement of a set does not imply the countability of the set in general.
An easy example is to consider an interval (a, b) and its complement in R: both of the subsets
are uncountable.
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