
MATH 2060B - Home Test 1

Suggested Solutions(It does not reflect the marking scheme)

1. (10 points) Let f(x) = sgn(sin π
x ) for x 6= 0 and f(0) = 0, where sgn denotes the sign function.

Show that f is Riemann integrable over [−1, 1] and find
∫ 1

−1 f(x)dx.

Solution. For any integer n ≥ 2, let 0 < δn < 1/2n(n− 1). Then we have

−1

k
+ δn < −

1

k + 1
− δn and

1

k + 1
+ δn <

1

k
− δn, ∀k = 1, 2, ..., n− 1.

Consider the partition Pn of [−1, 1] given by

Pn =

{
−1,−1 + δn,−

1

2
± δn, ...,−

1

n
− δn,−

1

n
,

1

n
,

1

n
+ δn, ...,

1

2
± δn, 1− δn, 1

}
.

By observing the graph of sin(π/x), the infimum and supremum of f on each sub-interval with
respect to Pn can be determined:

• If x ∈ [−1/k + δn,−1/(k + 1)− δn] for some k = 1, 2, ..., n− 1, we have

−1

k
< x < − 1

k + 1
=⇒ −(k + 1)π <

π

x
< −kπ.

Hence f(x) = 1 if k is even and f(x) = −1 if k is odd.

• Similarly if x ∈ [1/(k + 1) + δn, 1/k − δn] for some k = 1, 2, ..., n− 1, we have

1

k + 1
< x <

1

k
=⇒ kπ <

π

x
< (k + 1)π.

Hence f(x) = 1 if k is odd and f(x) = −1 if k is even.

• If x is in the remaining sub-intervals, we have the universal bound: −1 ≤ f(x) ≤ 1.

Notice that the terms in the lower sum and the upper sums with respect to sub-intervals of the first
and second type cancel out. Hence the lower and upper sums of f with respect to Pn are given by
the terms with respect to sub-intervals of the third type:

L(f, Pn) ≥ (−1) ·

[
2

(
δn +

n−1∑
k=2

2δn + δn

)
+

2

n

]
= −4(n− 1)δn −

2

n
> − 4

n

U(f, Pn) ≤ 1 ·

[
2

(
δn +

n−1∑
k=2

2δn + δn

)
+

2

n

]
= 4(n− 1)δn +

2

n
<

4

n

It follows that the lower and upper integrals of f satisfy:

− 4

n
< L(f, Pn) ≤

∫ 1

−1
f(x)dx ≤

∫ 1

−1
f(x)dx ≤ U(f, Pn) <

4

n
, ∀n ≥ 2.

Since n ≥ 2 is arbitrary, taking limit on both sides gives

0 ≤
∫ 1

−1
f(x)dx ≤

∫ 1

−1
f(x)dx ≤ 0.

It follows that the upper and lower integrals of f are both equal to 0. i.e., f is Riemann integrable
over [−1, 1]. Moreover, we have ∫ 1

−1
f(x)dx = 0.
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Comment. Many students take partitions in the form

Pn =

{
±1,±1

2
,±1

3
, ...,± 1

n

}
.

However, they mistakenly claim that f(x) = 1 or f(x) = −1 on each sub-interval except that contain
the point 0. In fact, f(x) = 0 at every x = 1/k. Hence the supremum and infimum on these sub-
intervals are not equal. This observation suggest we replace every 1/k by 1/k ± δn, where δn is
sufficiently small.
On the other hand, some students claim that f is integrable over [1/(k + 1), 1/k] for all k ∈ and
thus integrable over [0, 1]. This is not true as there are infinitely many intervals. Instead, we have
f ∈ R[ε, 1] for any ε > 0. Then follows by a suitable argument we can have f ∈ R[0, 1].
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2. (20 points) Let f be a continuous real-valued function defined on R.

(a) Suppose that there are constants c0 and c1 such that

lim
x→0

f(x)− c0 − c1x
x

= 0.

Show that f ′(0) exists.

(b) Suppose that f is a C1-function and there are constants c0, c1 and c2 such that

lim
x→0

f(x)− c0 − c1x− c2x2

x2
= 0.

Does it imply that the second derivative of f at 0 exist? Prove your assertion.

Solution.

(a) First, we show that f(0) = c0. Note that for all x 6= 0, we have

f(x) =
f(x)− c0

x
x+ c0 =

f(x)− c0 − c1x
x

x+ c1x+ c0

Hence, by continuity of f at 0, we have

f(0) = lim
x→0

f(x) = lim
x→0

f(x)− c0 − c1x
x

x+ c1x+ c0

= lim
x→0

f(x)− c0 − c1x
x

lim
x→0

x+ c1 lim
x→0

x+ lim
x→0

c0

= 0 · 0 + c1 · 0 + c0 = c0

Next we proceed to show f ′(0) = c1 and so f ′(0) exists.
This follows since we have

f ′(0) := lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

f(x)− c0
x

= lim
x→0

f(x)− c0 − c1x
x

+ c1

= 0 + c1 = c1

(b) No. We proceed to give a counterexample. Take c0 = c1 = c2 := 0. Define f : R→ R by

f(x) =

{
x3 sin(1/x) x 6= 0

0 x = 0

First, note that limx→0
f(x)
x2 = limx→0 x sin(1/x) = 0. Hence, the condition in the question is

satisfied.
Next, we claim that f ∈ C1(R).
For x 6= 0, it is clear that f ′(x) = 3x2 sin(1/x)− x cos(1/x) exists.

When x = 0, we have limx→0
f(x)−f(0)

x−0 = limx→0 x
2 sin(1/x) = 0. Therefore f ′(0) = 0 exists.

It remains to show that f ′ is continuous at x = 0 (as it is clearly continuous when x 6= 0). This
follows from the Squeeze Theorem as by the triangle inequality we have the inequality

|f ′(x)| =
∣∣3x2 sin(1/x)− x cos(1/x)

∣∣ ≤ 3
∣∣x2∣∣+ |x|

where x 6= 0.
Finally, we show that f ′′(0) does not exist.

Note that for all x 6= 0, we have f ′(x)−f ′(0)
x−0 = 3x sin(1/x) − cos(1/x). Since limx→0 cos(1/x)

does not exists (see Assignment 3 Q1) but limx→0 x sin(1/x) = 0, it follows that f ′′(0) does not
exist.
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Comment. In Part (b), many of you has claimed the truth of the statement by using the L’Hospital
Rule on

lim
x→0

f(x)− c0 − c1x− c2x2

x2
= 0

to obtain

lim
x→0

f ′(x)− c1 − 2c2x

2x
= 0

which is not correct. In general, the converse of the L’Hospital Rule may not hold: under the con-

dition of L’Hospital Rule, the existence of limx→a
f(x)
g(x) may not imply the existence of limx→a

f ′(x)
g′(x) .

In fact such concepts appeared in Assignment 3 Q1; the counter-example here is simply a slight
modification of the function in that question.
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3. (20 points) Let f : (0, 1)→ R be a function given by

f(x) =

{
1
p if x = q

p and p, q are relatively prime positive integers;

0 if x is irrational.

Describe the continuity of f .a) Describe the differentiability of f .b)

Justify your answer by using the definitions.

Solution.

(a) We claim that f is discontinuous on Q ∩ (0, 1) but is continuous on (0, 1).
Claim 1: f is discontinuous on Q.
Let x ∈ (0, 1) be rational. By denseness of Qc ∩ (0, 1) in (0, 1), pick a sequence of irrational
numbers (xn) in (0, 1) such that limn xn = x. Then limn f(xn) = 0, but f(x) = 1/p for some
p ∈ N. Hence f is not continuous at x by sequential criteria.
Claim 2: f is continuous on Qc.
Let x ∈ (0, 1) be irrational. Define Ep := {x ∈ (0, 1) : x = q

p , q, p ∈ N, (q, p) = 1} for all p ∈ N.

Then Ep is a finte set for all p ∈ N and Q ∩ (0, 1) =
⊔
pEp.

Now let 1 > ε > 0 (why can you restrict the value of ε?). Let N := max{n ∈ N : n ≤ 1/ε}
(whose existence follows from the well-ordering principle of natural numbers as the concerned
set is non-empty).Since Ep is a finite set for all p ∈ N, we can choose δ > 0 small enough (how?)

such that Bδ(x) ∩ (0, 1) ∩
⊔N
p=1Ep = φ.

Now take y ∈ Bδ(x). Suppose y /∈ Q. Then |f(y)− f(x)| = |0− 0| = 0 since both x, y /∈ Q.
Suppose y ∈ Q. Note that (0, 1) ∩ Q =

⊔∞
p=1Ep. By the choice of δ, we have y ∈ Ep for some

p > N . By the maximality of N , we then have p > 1/ε and so 1/p < ε.
Hence, |f(y)− f(x)| = |1/p− 0| < ε. We have showed by definition that f is continuous on all
irrational points.

(b) We claim that f is nowhere differentiable on (0, 1). Since differentiability implies continuity, it is
clear that f is not differentiable on rational points. It remains to show that f is not differentiable
on irrational points.
Let x ∈ (0, 1) be irrational. We proceed to prove by contraction.
Suppose it were true that f ′(x) exists. By denseness of Qc ∩ (0, 1). Choose a sequence (xn)
of irrational numbers where xn 6= x such that limn xn = x. Then we have for all n ∈ N the
difference quotient to be

f(xn)− f(x)

xn − x
= 0

Hence, f ′(x) = 0. It then suffices to show that f ′(x) cannot be 0.
Consider the sequence of prime numbers (pn) where pn denotes the nth prime numbers. For all
n ∈ N, define δn := 1/pn. It is clear that limn δn = 0 (since (pn) is a subsequence of natural
numbers). Since x < 1 and we have limn x+δn = x < 1, without loss of generality by considering
tail sequences, we can assume x + δn < 1 for all n ∈ N. Note that for all n ∈ N, since x is
irrational, the open intervals (xpn, (x+δn)pn) is of length 1 with non-integral endpoints. Hence,
there exists qn ∈ N such that

0 < xpn < qn < (x+ δn)pn < pn

It follows that
0 < x <

qn
pn

< x+ δn < 1

and so
∣∣∣ qnpn − x∣∣∣ < δn = 1

pn
.

Finally, write xn := qn
pn

. By the above, we have limn xn = x and that∣∣∣∣f(xn)− f(x)

xn − x

∣∣∣∣ =

∣∣∣∣ 1/pn
qn/pn − x

∣∣∣∣ ≥ 1/pn
1/pn

= 1

Hence f ′(x) ≥ 1 which is a contradiction.
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Comment. The function in the question is called the Thomae’s Function and the solution to this ques-
tion could be found on the Internet, for example on Wikipedia. However, many of those solutions,
for Part (b) in particular, make use of non-trivial number-theoritic results related to Diophantine
Approximation (approximating real numbers by rational numbers) like the Hurwitz’s Theorem. We
should remark that those are not necessary as could be seen from the proof, which uses only the
existence of infinitely many prime numbers.
Of course, if you are found to cite those number-theoretic results without a sound proof, you would
lose a portion of marks.
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