
Week 3

MATH 2040B

September 29, 2020

1 Concepts

1. T : V ! W is a linear transformation if

(a) T (v1 + v2) = T (v1) + T (v2)

(b) T (↵v1) = ↵T (v1)

2. Let T : V ! V be linear, then a subspace W ⇢ V is said to be
T-invariant if T (W ) ⇢ W . (We will use it later.)

2 Notations

1. N(T ) := {~x 2 V : T (~x) = ~0W } ⇢ V

2. R(T ) := {T (~x) : ~x 2 V } ⇢ W

3. Nullity(T ) = dimN(T ), Rank(T ) = dimR(T )

3 Formula

1. Nullity(T ) + Rank(T ) = dimV

2. Two facts:
(a) T is injective , N(T ) = 0 , Nullity(T ) = 0.
(b) T is surjective , R(T ) = W , Rank(T ) = dimW .

4 Problems

1. Let T : V ! W be a linear transfomation, and assume that dimV = dimW .
Prove that

T is injective , T is surjective
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2. Let T : R2 ! R3 be given by T (a, b) = (a+ b, 0, 2a� b)
a) Show that it is a linear transformation.
b) Is T injective?
c) Is T surjective?

3. Let T : R ! R be given by T (x) = x+ 1, is it linear?

4. Let T : R2 ! R2 with T (1, 2) = (3, 4), T (3, 4) = (1, 2), what is T (1, 0)?
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5. Let T : V ! V be linear,

a) Show that N(T ), R(T ) are T-invariant.

b) Suppose that T 2 = T , show that every v 2 V can be written as
a sum v = a + b with a 2 N(T ), b 2 R(T ) , and the expression is
unique.
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3. Let V be a real vector space, and W1,W2 are subspaces of V . The sum of
W1 and W2 is defined as

W1 +W2 := {w1 + w2 : w1 2 W1, w2 2 W2}

(a) Show that W1 +W2 is a subspace of V .

(b)If W1 = span (S1) ,W2 = span (S2) , show that W1 + W2 =
span (S1 [ S2)

(c) Suppose that W1 \ W2 = {0}. Then if R1 ⇢ W1, R2 ⇢ W2

are linearly independent subsets, show that R1 [R2 is also linearly
independent.
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4. Let A 2 Matn⇥n(R), and k be a positive integer such that Ak 6= 0, Ak+1 = 0

(a) Show that
�
I, A,A2, . . . , Ak

 
is linearly independent.

(b) Show that
�
I, A+ I, (A+ I)2, . . . , (A+ I)k

 
is linearly indepen-

dent.
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