Week 3

MATH 2040B

September 29, 2020

1 Concepts 1. $T: V \to W$ is a linear transformation if V W are both vector space

(a) $T(v_1 + v_2) = T(v_1) + T(v_2)$ $T(w) \subset W$ (b) $T(\alpha v_1) = \alpha T(v_1)$ 2. Let $T: V \to V$ be linear, then a subspace $W \subset V$ is said to be T-invariant if $T(W) \subset W$. (We will use it later.) We will use it later.)
 $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \end{bmatrix}$

2 Notations

- 1. $N(T) := \{ \vec{x} \in V : T(\vec{x}) = \vec{0}_W \} \subset V$ $\begin{array}{c}\n\downarrow \\
\hline\n\downarrow\n\end{array}$
- 2. $R(T) := \{T(\vec{x}) : \vec{x} \in V\} \subset W$
- 3. Nullity(T) = dim $N(T)$, Rank(T) = dim $R(T)$

3 Formula

1. Nullity (T) + Rank (T) = dim V

nn

- 2. Two facts:
- (a) *T* is injective $\Leftrightarrow N(T) = 0 \Leftrightarrow \text{Nullity}(T) = 0.$
- (b) *T* is surjective $\Leftrightarrow R(T) = W \Leftrightarrow \text{Rank}(T) = \dim W$.

4 Problems

1. Let $T: V \to W$ be a linear transfomation, and assume that dim $V = \dim W$. Prove that **4 Problems**
1. Let $T: V \to W$ be a linear transfomation, and assume the
Prove that
T is injective $\Leftrightarrow T$ is surjective

T is injective $\Leftrightarrow T$ is surjective

b) we can determine the
$$
h(T)
$$
. $h(T) = { \frac{1}{2} \pi r^2 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^5 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^5 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^3 + 10 \frac{1}{2} \pi r^4 + 10 \frac{1}{2} \pi r^5 + 10 \frac{1}{2}$

$$
\frac{1}{\sqrt{2}\pi\sqrt{1+\frac{1}{2}y-\frac{1}{2}y
$$

$$
l \alpha = V - T(V) \qquad T(a) = T(V) - T^{2}(V)
$$
\n
$$
V = (V - T(V)) + T(V) \qquad = T(V) - T(V) = v
$$
\n
$$
V(V) = V(V) \qquad \alpha \in NC(T)
$$
\n
$$
V = (V - T(V)) + T(V) \qquad \alpha \in NC(T)
$$
\n
$$
V = (V - T(V)) + T(V) \qquad \alpha \in NC(T)
$$
\n
$$
V = \alpha' + b' \qquad \alpha \in NC(T)
$$
\n
$$
V = T(\alpha')
$$
\n
$$
V = T(V) \qquad \alpha' = V(V) \qquad \alpha' = V - T(V) \qquad \alpha' = V - T(V)
$$
\n
$$
T = V(V) \qquad \alpha' = V - T(V) \qquad \alpha' = V - T
$$

3. Let V be a real vector space, and W_1, W_2 are subspaces of V. The sum of W_1 and W_2 is defined as

$$
W_1 + W_2 := \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}
$$

(a) Show that $W_1 + W_2$ is a subspace of V.

(b) If $W_1 = \text{span}(S_1), W_2 = \text{span}(S_2)$, show that $W_1 + W_2 =$ $\mathrm{span}(S_1 \cup S_2)$

(c) Suppose that $W_1 \cap W_2 = \{0\}$. Then if $R_1 \subset W_1, R_2 \subset W_2$

are linearly independent subsets, some with the with the conditions: 0 $0 \vee \in \text{wtwz}$
 $\circledast \overrightarrow{x}$ of \overrightarrow{y} and \overrightarrow{y} . \overrightarrow{y} and \overrightarrow{z} , \overrightarrow{y} and \overrightarrow{z} , \overrightarrow{y} and \overrightarrow{y} . O ax Ewitwe for \mathbf{y} a E F and \vec{z} \in $W_1 + W_2$ Firstly, $0v = 0 + 0v$ $\in W_1 + W_2$ Secondly, it $\overline{x}^2 = w_1 + w_1z \in W_1 + W_2$
 $\overline{y}^2 = \frac{w_2}{w_1} + \frac{w_2}{w_2} \in W_1 + W_2$
 $\overline{w}^2 = \frac{w_2}{w_1} + \frac{w_2}{w_2} \in W_1 + W_2$ and \overrightarrow{x} + \overrightarrow{y} = $w_{11} + w_{12} + w_{21} + w_{22}$ then = $(W_{11} + W_{21}) + CW_{12} + W_{22}) \in M_{1} + W_{2}$ \mathcal{M} $\frac{\Omega}{\Omega}$ In the end, let $a \in F(\mathfrak{P})$, we have $\alpha \cdot \overline{x^2} = \alpha(\omega_{11} + \omega_{12}) = (\alpha \omega_{11}) + (\alpha \omega_{12}) \in W_1 + W_2$
 W_1^0 W_2^0

Thus , we can get "Wi+W2 is a subspace of V.

(b) First, we should Write
$$
l_2 \le span(S_1 \cup S_2)
$$

\nFor $l_1 \neq l_2 = w_1 + w_2 = W_1 + W_2$, we have
\n $\vec{x} = \underbrace{w_1 l_1 + \alpha z_1 l_2 + \cdots + \alpha w_m L_m}_{n \text{ times } k \text{ times } m \text{ times }$

6 the first case.

\nAs a result, we have a(f the elements from
$$
P_1 \cup P_2
$$
 are linearly independent.

4. Let $A \in \text{Mat}_{n \times n}(\mathbb{R})$, and k be a positive integer such that $A^k \neq 0, A^{k+1} = 0$ (a) Show that $\{I, A, A^2, \ldots, A^k\}$ is linearly independent. (b) Show that $\{I, A + I, (A + I)^2, \ldots, (A + I)^k\}$ is linearly independent.

- (a) consider $Q_0 I + Q_1 A + \cdots + Q_K A^k = 0$
	- 1 Multiply $A^k \Rightarrow$ a. $A^k + 0 + \cdots + 0 = 0$ \Rightarrow $a_{0} = 0$ @ Multiply A^{R1} on both sides => α A^k \uparrow \circ \uparrow \ddots \uparrow \circ \varnothing \varnothing \circ \Rightarrow $\alpha_{1} = \circ$
		- repeat similar steps until we get ao ... art=0. In the end, we only have $ARA^k=0$ => $QK=0$
	- we have as ... ak = o for all of them.
	- (b). First we introduce the binomial theorem $(a+b)^n = \frac{n}{k!} {n \choose k} a^k b^{n-k}$ where $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$

$$
n! = n \times (n-1) \times \cdots \times 2 \times 1
$$

Now we consider $\sum_{i=1}^K O_i(A+I)^2 = 0$ $\left\langle \Rightarrow \right\rangle$ $\sum_{\tau=0}^{K}$ $\alpha_{\tau} \left(\frac{1}{\tau} \left(\frac{1}{y} \right) A^{\frac{1}{y}} I^{\frac{1}{y}} \right) = 0$ $\left\langle \Rightarrow \right\rangle$ $\sum_{\tau=n}^{k} \frac{\dot{\tau}}{\dot{\tau}=0}$ $\alpha \tau \left(\frac{\dot{\tau}}{2} \right) A^{\dot{\tau}} = \sigma$ $\iff \sum_{\overrightarrow{j}=b}^{\kappa} \sum_{\overrightarrow{i}=b}^{K} a \overrightarrow{i} \left(\frac{t}{\overrightarrow{j}} \right) A^{\overrightarrow{j}} = b \left(S^{\text{Witch}} \overrightarrow{i} \cdot \overrightarrow{j} \right)$ $\left\langle \zeta \right\rangle \sum_{i=b}^{K} \left(\sum_{i=1}^{K} o_{i} \left(\frac{i}{3} \right) \right) A^{i} = 0$ From (a), we know all the coefficients of A^j Should be \mathcal{D} . ω when \vec{J} = k $\sum_{\tilde{u} \in K} \hat{u} \tilde{u} \begin{pmatrix} \tilde{u} \\ \tilde{u} \end{pmatrix} = \tilde{u} \tilde{k} = 0$ \odot when $j = r-1$ $\sum_{k=1}^{k} \alpha_k \left(\frac{1}{2} \right) = \alpha_{k-1} \left(\frac{k-1}{k-1} \right) + \alpha_k \left(\frac{k}{k-1} \right)$ $= 0 + 1 + 0 = 0$ \Rightarrow $a_{k-1}=0$ 3) Repeat all these steps, and then we have all fais are e which completes this proof.