Week 5

MATH 2040B

October 13, 2020

1 Concepts

- 1. Matrix representation: Given a linear transformation T from finite dimension vector space U to finite dimension vector space $V, \beta = \{\beta_1, \dots, \beta_n\}$ is an ordered basis of U and $\gamma = \{\gamma_1, \dots, \gamma_m\}$ is an ordered basis of V, if $T(\beta_j) = \sum_{i=1}^m T_{ij}\gamma_i$, then the $m \times n$ matrix $[T]_{\beta}^{\gamma} = (T_{ij})$ is called the matrix representation of T.
- 2. The coordinate representation corresponding to γ of $T(\beta_j)$ is $[T(\beta_j)]_{\gamma} = (T_{1j}, \cdots, T_{mj})^T$, and $[T]_{\beta}^{\gamma}$ can be writed as the combination of these column vectors $[T]_{\beta}^{\gamma} = [[T(\beta_1)]_{\gamma}, \cdots, [T(\beta_n)]_{\gamma}]$.
- 3. If U = V and $\beta = \gamma$, then the matrix representation of T can be simplified as $[T]_{\beta}$

2 Problems

1. $T : \mathbb{R}^2 \to \mathbb{R}^3$, T(a, b) = (a - b, a + b, a), find $[T]^{\gamma}_{\beta}$ where β, γ are standard basis of \mathbb{R}^2 and \mathbb{R}^3 . Ans: T(1, 0) = (1, 1, 1) and T(0, 1) = (-1, 1, 0), then

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & -1\\ 1 & 1\\ 1 & 0 \end{pmatrix}$$

2. $T : \mathbb{R}^2 \to \mathbb{R}^3$, T(a,b) = (a - b, a + b, a), find $[T]^{\gamma}_{\beta}$ where $\beta = \{(1,1), (1,-1)\}$ and $\gamma = \{(0,1,1), (1,0,1), (1,1,0)\}$. Ans: T(1,1) = (0,2,1) and T(1,-1) = (2,0,1). Suppose that

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \\ t_{31} & t_{32} \end{pmatrix}$$

then we have

$$\begin{cases} t_{21} + t_{31} = 0\\ t_{11} + t_{31} = 2\\ t_{11} + t_{21} = 1\\ t_{22} + t_{32} = 2\\ t_{12} + t_{32} = 0\\ t_{12} + t_{22} = 1 \end{cases}$$

Solve above equations we get that $t_{11} = \frac{3}{2}, t_{21} = -\frac{1}{2}, t_{31} = \frac{1}{2}, t_{12} = -\frac{1}{2}, t_{22} = \frac{3}{2}, t_{32} = \frac{1}{2}$, so

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

3. Let $\beta = \{\beta_1, \dots, \beta_n\}, \gamma = \{\gamma_1, \dots, \gamma_m\}$ be basis of vector space U and V. $\mathcal{L}(U, V)$ is the set of all linear transformation from U to V. It is known that $\mathcal{L}(U, V)$ is a vector space with addition: (P + Q)(u) = P(u) + Q(u) and scalar multiple: (aP)(u) = aP(u). Show that the map $T : \mathcal{L}(U, V) \to M_{m \times n}(F)$ that $T(P) = [P]_{\beta}^{\gamma}$ is linear.

Ans: we need to check that T(P+Q) = T(P) + T(Q) and T(aP) = aT(P).

(a) Assume that $T(P) = [P]_{\beta}^{\gamma} = (A_{ij}), T(Q) = [Q]_{\beta}^{\gamma} = (B_{ij})$ and $T(P+Q) = [P+Q]_{\beta}^{\gamma} = (C_{ij})$, which is equal to

$$P(\beta_j) = \sum_{i=1}^m A_{ij}\gamma_i$$
$$Q(\beta_j) = \sum_{i=1}^m B_{ij}\gamma_i$$
$$(P+Q)(\beta_j) = \sum_{i=1}^m C_{ij}\gamma_i.$$

On the other side,

$$(P+Q)(\beta_j) = P(\beta_j) + Q(\beta_j) = \sum_{i=1}^m A_{ij}\gamma_i + \sum_{i=1}^m B_{ij}\gamma_i = \sum_{i=1}^m (A_{ij} + B_{ij})\gamma_i$$

Therefore, $C_{ij} = A_{ij} + B_{ij}$ and $T(P+Q) = [P+Q]^{\gamma}_{\beta} = [P]^{\gamma}_{\beta} + [Q]^{\gamma}_{\beta} = T(P) + T(Q)$. (b) Assume that $T(P) = [P]^{\gamma}_{\beta} = (A_{ij})$ and $T(aP) = [aP]^{\gamma}_{\beta} = (D_{ij})$, which is equal to

$$P(\beta_j) = \sum_{i=1}^m A_{ij} \gamma_i$$
$$(aP)(\beta_j) = \sum_{i=1}^m D_{ij} \gamma_i.$$

On the other side,

$$(aP)(\beta_j) = aP(\beta_j) = a\sum_{i=1}^m A_{ij}\gamma_i = \sum_{i=1}^m aA_{ij}\gamma_i$$

Therefore, $D_{ij} = aA_{ij}$ and $T(aP) = [aP]^{\gamma}_{\beta} = a[P]^{\gamma}_{\beta} = aT(P)$.

So T is linear.

4. Prove that $T : \mathcal{L}(U, U) \to M_{n \times n}(F)$ is injective.

Ans: Let $P \in N(T)$, then $[P]_{\beta} = (P_{ij}) = 0$ and $P_{ij} = 0$ for any $i, j \in \{1, \dots, n\}$. So we have $P(\beta_j) = \sum_{i=1}^n 0 \times \beta_i = 0$, and for any $u \in U$, $u = \sum_{i=1}^n a_i \beta_i$, $P(v) = \sum_{i=1}^n a_i P(\beta_i) = 0$, so P = 0, $N(T) = \{0\}$ and then T is injective.

- 5. Suppose $P: U \to U$ is linear, show that the following two statements are equivalent.
 - (1). $P^2 = P;$
 - (2). For some basis η of U and $r \leq n = \dim(U)$,

$$[P]_{\eta} = \begin{pmatrix} I_{r \times r} & 0\\ 0 & 0 \end{pmatrix}$$

Ans: (1) \Rightarrow (2): By R-N theorem, we can assume that $\eta_R = \{u_1, \dots, u_r\}$ is a basis of R(P)and $\eta_N = \{v_1, \dots, v_{n-r}\}$ is a basis of N(P). Claims that $\eta = \eta_R \cup \eta_N$ is a basis of U. To prove this, we just need to check η is linearly independent. Suppose

$$a_1u_1 + \dots + a_ru_r + b_1v_1 + \dots + b_{n-r}v_{n-r} = 0.$$

Applying P we get that

$$a_1P(u_1) + \dots + a_rP(u_r) = 0$$

Note that $u_i \in R(P)$, there exists some $x_i \in U$ such that $P(x_i) = u_i$, so $P(u_i) = P^2(x_i) = P(x_i) = u_i$, then

$$a_1 P(u_1) + \dots + a_r P(u_r) = a_1 u_1 + \dots + a_r u_r = 0,$$

which means $a_1 = \cdots = a_r = 0$. Then

$$a_1u_1 + \dots + a_ru_r + b_1v_1 + \dots + b_{n-r}v_{n-r} = b_1v_1 + \dots + b_{n-r}v_{n-r} = 0.$$

which means $b_1 = \cdots = b_{n-r} = 0$. So η is linearly independent so the claim is proved. Now $P(u_i) = u_i$ and $P(v_i) = 0$, then

$$[P]_{\eta} = \begin{pmatrix} I_{r \times r} & 0\\ 0 & 0 \end{pmatrix}$$

(2) \Rightarrow (1): Since $[P]_{\eta} = \begin{pmatrix} I_{r \times r} & 0\\ 0 & 0 \end{pmatrix}$,

$$[P^{2}]_{\eta} = [P]_{\eta}[P]_{\eta} = \begin{pmatrix} I_{r \times r} & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_{r \times r} & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_{r \times r} & 0\\ 0 & 0 \end{pmatrix} = [P]_{\eta}$$

By the conclusion of Q4, $T : \mathcal{L}(U, U) \to M_{m \times m}(F)$ is injective and so $P^2 = P$.