Week 4

MATH 2040B

October 6, 2020

1 Concepts

- 1. Vector space
- 2. Subspace
- 3. Linear combination and Span
- 4. Linear dependent and Linear independent
- 5. Basis and Dimension
- 6. Replacement theorem
- 7. Linear transformation
- 8. Null space and Range
- 9. Rank and Nullity
- 10. Rank-nullity theorem

2 Remarks

- 1. $W_1 \cap W_2$ is vector space, $W_1 \cup W_2$ may not.
- 2. $\{0\}$ is subspace of any vector space V.
- 3. $\operatorname{span}(\emptyset) = \{0\}$ and \emptyset is the basis of $\{0\}$.
- 4. $\operatorname{span}(S)$ is the smallest subspace contains S.
- 5. Any finite spanning set can be reduced to a basis.
- 6. Any finite linear independent set can be extended to a basis.
- 7. Linear transformation preserves linear combination.
- 8. T is injective $\Leftrightarrow N(T) = \{0\} \Leftrightarrow \text{Nullity}(T) = 0.$
- 9. T is surjective $\Leftrightarrow R(T) = W \Leftrightarrow \operatorname{Rank}(T) = \dim(W).$

3 Formula

- 1. $\#L \leq \dim(V) = \#B \leq \#S$, where V is a vector space, L is any linear independent set, B is any basis and S is any spanning set.
- 2. $N(T) = \{x \in V : T(x) = 0\}.$
- 3. $R(T) = \{T(X) : x \in V\}.$
- 4. Nullity $(T) = \dim(N(T))$.
- 5. $\operatorname{Rank}(T) = \dim(R(T)).$
- 6. $\operatorname{Rank}(T) + \operatorname{Nullity}(T) = \dim(W).$

4 Class note details

 $(VSI): \vec{x} + \vec{y} = \vec{y} + \vec{x} \quad \forall \vec{x}, \vec{y} \in V$ $(VS2): (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z}) \quad \forall \vec{x}, \vec{y}, \vec{z} \in V$ + (VS3): $\exists \vec{0} \in V$ s.t. $\vec{X} + \vec{0} = \vec{X}$ $\forall \vec{X} \in V$ $(VS4) = \forall \vec{X} \in V, \exists \vec{y} \in V$ s.t. $\vec{X} + \vec{y} = \vec{0}$ (inverse) $\begin{cases} (vss) = 1 \vec{x} = \vec{x} & \forall \vec{x} \in V \\ (vss) = 1 \vec{x} = \vec{x} & \forall \vec{x} \in V \\ (vss) = (ab) \vec{x} = a(b\vec{x}) & \forall a, b \in F, \forall \vec{x} \in V \\ \hline FF \\ FF \\ (vs7) = a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y} & \forall a \in F, \forall \vec{x}, \vec{y} \in V \\ \hline F & \nabla & \nabla \\ \end{cases}$ (VS8): $(a+b)\vec{X} = a\vec{X} + b\vec{X} \quad \forall a, b \in F, \forall \vec{X} \in V$ Remark: an element in F is called scalar. Subspace Definition: A subset W of a vector space V over a field F is called a subspace of V if W is a vector space over F under the same addition and scalar multiplication inherited from V. Proposition. Let V be a vector space over F. A subset WCV is a subspace iff the following 3 conditions holds : (a) Dy EW (b) X+JEW, VX, JEW (closed under addition) (c) a X eW, Va EF, X eW (closed under scalar multiplication)

Lecture 3:
Recall: · Linear combination of
$$S =$$

 $\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + ... + a_n\vec{v}_n$
 $\vec{F} \cdot \vec{S} \cdot \vec{F} \cdot \vec{S}$
 $a_i's are called coefficients$
 $\cdot \quad Span(S) = \{a_i\vec{v}_1 + ... + a_n\vec{v}_n : a_i\in F, i=1,2,...,n, n\in N, \vec{v}_j\in S\}$
Lecture 4:
Recall: 1. Linearly independent means NOT linearly dependent.
Linearly dependent S,
 $\exists a_i sincet \vec{u}_1, \vec{v}_2, ..., \vec{v}_n \in S$ and $\exists a_1, a_2, ..., a_n \in F$
 $(n + t - a) \cdot \vec{v}_1 + a_2\vec{v}_2 + ... + a_n\vec{v}_n = \vec{o}$.
2. Linearly independent S
 $\Rightarrow a_i\vec{u}_1 + a_2\vec{v}_2 + ... + a_n\vec{v}_n = \vec{o}$.
2. Linearly independent S
 $\Rightarrow a_i\vec{u}_1 + \dots + a_n\vec{v}_n \Rightarrow a_i = a_2 = ... = a_n = o$.
 $\vec{S} \cdot \vec{v}_1 = a_1 \cdot a_2 \cdot \dots + a_n\vec{v}_n$
 $\vec{v}_1 = a_1 \cdot a_2 \cdot \dots + a_n\vec{v}_n$
 $\vec{v}_1 = a_1 \cdot a_2 \cdot \dots + a_n\vec{v}_n$
 $\vec{v}_1 = a_2 \cdot \dots + a_n = o$.
Definition: A basis for a vector space V is a subset $\beta \in V$
 $such that:$
 $\cdot \beta$ is linearly independent and
 $\cdot \beta$ spans V, i.e. $pan(\beta) = V$.
 $i \neq h$

Theorem: Let V be a vector space. Let GCV be a spanning set for V consisting of n vectors. and LCV be a linearly independent subset consisting of m vectors. Then, MEN and EHCG consisting of exactly n-m vectors such that LUH spans V. (Replacement thm) lin. Linear Transformation Definition: Let V and W be vector spaces over F. A linear transformation from V to W is a map T: V→W such that = (a) $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$ (b) $T(a\vec{x}) = aT(\vec{x})$ for all x, jeV, a EF. (אַד

5 Problems

1. $V = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$, then find a basis of V.

2. Give an example of a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that N(T) = R(T).

- 3. Determine whether the following sets S are linear independent or not. If not, reduce it to a linear independent set β such that span $(\beta) = \text{span}(S)$. If so, determine whether it is the basis of vector space V.
 - (a) $S = \{x^2 + x^5, -2x^2 + x^{10}, 3x^2 x^5\}, V = P_{10}(\mathbb{R}),$
 - (b) $S = \{(2,3,4), (1,3,5), (5,9,15), (4,3,2)\}, V = \mathbb{R}^3.$

4. Let V be a finite-dimension vector space over \mathbb{R} and Z is a subspace of V, for any $v \in V$,

$$[v] = \{ u \in V : v - u \in Z \}$$

Let $V/Z = \{[u] : u \in V\}$. Define [u] + [v] = [u + v] and a[u] = [au] for any $a \in \mathbb{R}$ and $u, v \in V$. Prove that V/Z is a vector space.