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Sec. 6.5

2 Q: For each of the following matrices A, find an orthogonal or unitary matrix P and a

diagonal matrix D such that P ∗AP = D.

(c) (
2 3− 3i

3 + 3i 5

)
(d) 0 2 2

2 0 2

2 2 0


(e) 2 1 1

1 2 1

1 1 2


Sol: (c) The characteristic polynomial of A is

(2− t)(5− t)− (3− 3i)(3 + 3i) = t2 − 7t− 8 = (t− 8)(t+ 1).

Hence, −1, 8 are all the eigenvalues of A. Note that for any scalars a, b,

3

(
−2 1− i

1 + i −1

)(
a

b

)
=

(
−6 3− 3i

3 + 3i −3

)(
a

b

)
= (A− 8I)

(
a

b

)
= ~0

if and only if b = (1 + i)a. In particular, u = (1, 1 + i) is an eigenvector of A

corresponding to eigenvalue 8.

‖u‖ =

√
11 + (1 + i)(1 + i) =

√
3.

On the other hand, for any scalars a, b,

3

(
1 1− i

1 + i 2

)(
a

b

)
=

(
3 3− 3i

3 + 3i 6

)(
a

b

)
= (A+ I)

(
a

b

)
= ~0

if and only if a = (i − 1)b. In particular, v = (i − 1, 1) is an eigenvector of A

corresponding to eigenvalue −1.

‖v‖ =

√
(i− 1)(i− 1) + 11 =

√
3.
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Then

P =
1√
3

(
1 i− 1

i+ 1 1

)
is a unitary matrix and

D =

(
8 0

0 −1

)
is a diagonal matrix such that P ∗AP = D.

(d) The characteristic polynomial of A is

det

−t 2 2

2 −t 2

2 2 −t

 = (4− t)(2 + t)2.

Hence, 4, 1 are all the eigenvalues of A. It is clear that u = (1, 1, 1) is an eigenvector

of A corresponding to eigenvalue 4.

‖u‖ =
√

12 + 12 + 12 =
√

3.

Note that for any scalars a, b, c,2 2 2

2 2 2

2 2 2

ab
c

 = (A+ 2I)

ab
c

 = ~0

if and only if a + b + c = 0. Then we see that v = (1,−1, 0) is an eigenvector

of A corresponding to eigenvalue 1. We would like to find a further eigenvector

w = (a′, b′, c′) of A corresponding to 1 such that 〈v, w〉 = 0, i.e. a′ − b′ = 0. Then

we see that w = (1, 1,−2) is such a eigenvector.

‖v‖ =
√

12 + (−1)2 + 02 =
√

2.

‖w‖ =
√

12 + 12 + (−2)2 =
√

6.

Then

P =
1√
3

1 1√
2

1√
6

1 − 1√
2

1√
6

1 0 − 2√
6


is a unitary matrix and

D =

4 0 0

0 −2 0

0 0 −2


is a diagonal matrix such that P ∗AP = D.
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(e) The characteristic polynomial of A is

det

2− t 1 1

1 2− t 1

1 1 2− t

 = det

2− t 1 1

t− 1 1− t 0

t− 1 0 1− t

 = det

4− t 1 1

0 1− t 0

0 0 1− t


= (4− t)(1− t)2.

Hence, 4, 1 are all the eigenvalues of A. It is clear that u = (1, 1, 1) is an eigenvector

of A corresponding to eigenvalue 4.

‖u‖ =
√

12 + 12 + 12 =
√

3.

Note that for any scalars a, b, c,1 1 1

1 1 1

1 1 1

ab
c

 = (A− I)

ab
c

 = ~0

if and only if a + b + c = 0. Then we see that v = (1,−1, 0) is an eigenvector

of A corresponding to eigenvalue 1. We would like to find a further eigenvector

w = (a′, b′, c′) of A corresponding to 1 such that 〈v, w〉 = 0, i.e. a′ − b′ = 0. Then

we see that w = (1, 1,−2) is such a eigenvector.

‖v‖ =
√

12 + (−1)2 + 02 =
√

2.

‖w‖ =
√

12 + 12 + (−2)2 =
√

6.

Then

P =
1√
3

1 1√
2

1√
6

1 − 1√
2

1√
6

1 0 − 2√
6


is a unitary matrix and

D =

4 0 0

0 1 0

0 0 1


is a diagonal matrix such that P ∗AP = D.

6 Q: Let V be the inner product space of complex-valued continuous functions on [0,1] with

the inner product

〈f, g〉 =

∫ 1

0
f(t)g(t)dt

Let h ∈ V, and define T : V → V by T(f) = hf. Prove that T is a unitary operator if

and only if |h(t)| = 1 for 0 ≤ t ≤ 1.

Sol: If T is unitary, we must have

0 = ‖T (f)‖2 − ‖f‖2 =
∫ 1
0 |h|

2|f |2dt−
∫ 1
0 |f |

2dt

=
∫ 1
0

(
1− |h|2

)
|f |2dt
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for all f ∈ V. Pick f =
(
1− |h|2

) 1
2 and get 1 − |h|2 = 0 and so |h| = 1. Conversely, if

|h| = 1, we have

‖T (f)‖2 − ‖f‖2 =

∫ 1

0
|h|2|f |2dt−

∫ 1

0
|f |2dt

=

∫ 1

0

(
1− |h|2

)
|f |2dt = 0

and so T is unitary.

7 Q: Prove that if T is a unitary operator on a finite-dimensional inner product space V, then

T has a unitary square root; that is, there exists a unitary operator U such that T = U2.

Sol: By the Corollary 2 after Theorem 6.18 , we may find an orthonormal basis β such that

[T ]β =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

 .

Also, since the eigenvalue λi has its absolute value 1, we may find some number µi such

that µ2i = λi and |µi| = 1. Denote

D =


µ1 0 · · · 0

0 µ2
...

...
. . . 0

0 · · · 0 µn


to be an unitary operator. Now pick U to be the matrix whose matrix representation

with respect to β is D. Thus U is unitary and U2 = T .

12 Q: Let A be an n× n real symmetric or complex normal matrix. Prove that

det(A) =
n∏
i=1

λi

where the λi ’s are the (not necessarily distinct) eigenvalues of A.

Sol: By Theorem 6.19 and Theorem 6.20 we know that A may be diagonalized as P ∗AP = D.

Here D is a diagonal matrix whose diagonal entries consist of all eigenvalues. Now we

have

det(A) = det (PDP ∗) = det(D) =

n∏
i=1

λi

13 Q: Suppose that A and B are diagonalizable matrices. Prove or disprove that A is similar

to B if and only if A and B are unitarily equivalent.

Sol: The necessity is false. For example, the two matrices

(
1 −1

0 0

)
and

(
1 0

0 0

)
=

(
1 1

0 1

)−1(
1 −1

0 0

)(
1 1

0 1

)
are similar. But they are not unitary since one is symmetric but the other is not.
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Sec. 6.6

2 Q: Let V = R2, W = span({(1, 2)}), and β be the standard ordered basis for V. Compute

[T]β, where T is the orthogonal projection of V on W. Do the same for V = R3 and

W = span({(1, 0, 1)}).
Sol: We could calculate the projection of (1, 0) and (0, 1):

〈(1, 0), (1, 2)〉
‖(1, 2)‖2

(1, 2) =
1

5
(1, 2)

and
〈(0, 1), (1, 2)〉
‖(1, 2)‖2

(1, 2) =
2

5
(1, 2)

respectively by Theorem 6.6, So we have

[T ]β =
1

5

(
1 2

2 4

)
.

On the other hand, we may do the same on (1, 0, 0), (0, 1, 0), and (1,0,0) with respect to

the new subspace W = span({(1, 0, 1)}). First we compute

〈(1,0,0),(1,0,1)〉
‖(1,0,1)‖2 (1, 0, 1) = 1

2(1, 0, 1)
〈(0,1,0),(1,0,1)〉
‖(1,0,1)‖2 (1, 0, 1) = 0(1, 0, 1)

and
〈(0, 0, 1), (1, 0, 1)〉
‖(1, 0, 1)‖2

(1, 0, 1) =
1

2
(1, 0, 1).

Hence the matrix would be

[T ]β =
1

2

 1 0 1

0 0 0

1 0 1

 .

4 Q: Let W be a finite-dimensional subspace of an inner product space V . Show that if T is

the orthogonal projection of V on W , then I − T is the orthogonal projection of V on

W⊥.

Sol: Fix v ∈ V . Then ∃ unique w ∈ W and unique u ∈ W⊥ such that v = w + u. As T

is the orthogonal projection of V on W , w = T (v) and thus u = v − w = (I − T )(v).

Therefore, I − T is a projection of V on W⊥ along W = (W⊥)⊥, which implies that

I − T is the orthogonal projection of V on W⊥.

6 Q: Let T be a normal operator on a finite-dimensional inner product space. Prove that if

T is a projection, then T is also an orthogonal projection.

Sol: Let V be the domain of the operator T . Fix u ∈ N(T ) and w ∈ R(T ). We claim that

〈u, v〉 = 0. If either u or w is the zero vector, then we are done. Now suppose u 6= ~0 and

w 6= ~0. As T (u) = ~0 and T (w) = w, u is indeed an eigenvector of T corresponding to

the eigenvalue 0, while w is an eigenvector of T corresponding to the eigenvalue 1. By

Theorem 6.15, 〈u,w〉 = 0. Therefore, N(T ) and R(T ) are orthogonal, whence T is an

orthogonal projection.
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7 Q: Let T be a normal operator on a finite-dimensional complex inner product space V . Use

the spectral decomposition λ1T1 + λ2T2 + · · ·+ λkTk of T to prove the following results.

(a) If g is a polynomial, then

g(T ) =
k∑
i=1

g(λi)Ti.

(b) If Tn = T0 for some n, then T = T0.

(c) Let U be a linear operator on V . Then U commutes with T if and only if U commutes

with each Ti.

(d) There exists a normal operator U on V such that U2 = T .

(e) T is invertible if and only if λi 6= 0 for 1 ≤ i ≤ k.

(f) T is a projection if and only if every eigenvalue of T is 1 or 0.

(g) T = −T ∗ if and only if every λi is an imaginary number.

Sol: (a) Note that T 0 = I =
∑k

i=1 Ti. ∀j ∈ Z+,

T j =

k∑
i1=1

· · ·
k∑

ij=1

λi1 · · ·λijTi1 · · ·Tij =
k∑

i1=1

· · ·
k∑

ij=1

λi1 · · ·λijδi1i2δi1i3 · · · δi1ijTi1

=
k∑
i=1

λjiTi.

Write g(t) = ant
n + · · ·+ a1t+ a0, where a0, ..., an ∈ C. Then

g(T ) = anT
n + · · ·+ a1T + a0I = an

k∑
i=1

λni Ti + · · · a1
k∑
i=1

λiTi + a0

k∑
i=1

Ti

=
k∑
i=1

(anλ
n
i + · · · a1λi + a0)Ti =

k∑
i=1

g(λi)Ti.

(b) Suppose Tn = T0 for some n. Then
∑k

i=1 λ
n
i Ti = T0. It implies that λn1 = · · · =

λnk = 0, whence λ1 = · · · = λk = 0. Therefore, T = T0.

(c) (⇒) Since T,U commute, a T -invariant subspace of V is also U -invariant. Fix v ∈ V .

∀i ∈ {1, ..., k}, we have

TiU(v) + (T − (λi − 1)Ti)U(v) = TU(v) = UT (v) = UTi(v) + U(T − (λi − 1)Ti)(v)

and therefore TiU(v) = UTi(v).

(⇐) We have

UT = λ1UT1 + · · ·+ λkUTk = λ1T1U + · · ·+ λkTkU = TU.

(d) ∀i ∈ {1, ..., k}, choose µi ∈ C such that µ2i = λi. Define U = µ1T1 + · · ·+ µkTk. By

Gram-Schmidt Orthogonalization Process and Theorem 6.16, U is normal. Using

the result of (a), U2 = µ21T1 + · · ·+ µ2kTk = λ1T1 + · · ·+ λkTk = T .
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(e) (⇒) In particular, N(T ) = {~0}. Then 0 is not an eigenvalue of T , whence λi 6= 0 for

1 ≤ i ≤ k.

(⇐) It means that 0 is not an eigenvalue of T . So if v ∈ N(T ), then T (v) = ~0 = 0 ·v,

forcing that v = ~0. T is then one-to-one. As V is finite-dimensional, T is also onto.

Then T is invertible.

(f) (⇒) Suppose λ ∈ C is an eigenvalue of T . Then ∃v ∈ V such that v 6= ~0 and

T (v) = λv. As T is a projection, λv = T (v) = T 2(v) = λ2v, whence λ(λ− 1)v = ~0.

As v 6= ~0, λ(λ− 1) = 0, whence either λ = 1 or λ = 0.

(⇐) Case (1): Suppose 1 is an eigenvalue of T . Then without loss of generality we

can assume λ1 = 1 and λi = 0 for any 1 < i ≤ k. Then T = T1 is a projection.

Case (2): Suppose 1 is not eigenvalue of T . Then without loss of generality we can

assume λi = 0 for any 1 ≤ i ≤ k and hence T is the zero transformation, which is a

projection as well.

(g) (⇒) Fix i ∈ {1, ..., k}. Fix vi with vi 6= ~0 and T (vi) = λivi. Then T ∗(vi) = λivi. We

have λivi = T (vi) = −T ∗(vi) = −λivi. But vi 6= ~0. Thus, λi = −λi. It means that

λi is an imaginary number.

(⇐) Fix v ∈ V . Then ∃v1, ..., vk ∈ V such that T (vi) = λivi ∀i ∈ {1, ..., k} and

v = v1 + · · ·+ vk. We have

−T ∗(v) = −T ∗(v1)− · · · − T ∗(vk) = −λ1v1 − · · · − λkvk = λ1v1 + · · ·+ λkvk = T (v).

Therefore, T = −T ∗.

10 Q: Simultaneous diagonalization. Let U and T be normal operators on a finite-dimensional

complex inner product space V such that TU = UT . Prove that there exists an or-

thonormal basis for V consisting of vectors that are eigenvectors of both T and U .

Sol: Let λ1, ..., λk be all the distinct eigenvalues of T . ∀i ∈ {1, ..., k}, let Eλi be the eigenspace

of T corresponding to the eigenvalue λi. By Theorem 6.16, we have an orthogonal

decomposition

V = Eλ1 ⊕ · · · ⊕ Eλk .

Fix i ∈ {1, ..., k}. Since TU = UT , Eλi is U -invariant. Note that Eλi is the eigenspace of

T ∗ corresponding to eigenvalue λi. We also have T ∗U∗ = (UT )∗ = (TU)∗ = U∗T ∗ and

thus Eλi is also U∗-invariant. Then by Exercise 7 in Sec. 6.4, UEλi
is normal because U

is normal. By Theorem 6.16, ∃ orthonormal basis {vii, ..., vini} of UEλi
for Eλi such that

vii, ..., vini are eigenvectors of UEλi
. Then

β = {v11, ..., v1n1 , ..., vk1, ..., vknk}

is an orthonormal basis for V such that ∀i ∈ {1, ..., k}, ∀j ∈ {1, ..., ni}, vij is an eigen-

vector of both U and T .
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