Lecture 5:

Theorem: Suppose S is a finite spanning set for a vector space V . Then: $\exists \beta \in S$ which is a basis for V. (^A finite spanning set can be reduced to ^a basis) Proof: If S is lin. independent, then we take $\beta = \beta$.) therwise , $\exists \vec{v}_i \in S$ such that $Span(S \setminus \bar{\vec{v}}_i \c\}) = Spin(S)$ (by lemma) If $S \setminus \{\vec{v}_1\}$ is linearly independent, then take $\beta = S \setminus \{\vec{v}_1\}$. Otherwise, $\exists \vec{v}_z \in S \setminus \{\vec{v}_1\}$ such that $Span(S \setminus \{\vec{v}_1, \vec{v}_2\}) = Span(S \setminus \{\vec{v}_i\})$ Repeat this process. y S is finite S is finite. The process must stop at a linearly ind ependent subset $S_{k} = S \setminus \{v_{1},...,v_{k}\} \subset S$ and S_{p} an(S_{k})=Spanis) " $\int a k \cos \beta f \sin \beta g$ V

 L emma: L et V be a vector space, and let S_1 CS2 CV. Then: $tan S₁$ is linearly dependent $\Rightarrow S₂$ is linearly dependent S_i is linearly independent \leftarrow S_2 is linearly independent ✓ (b) $Span(S_1) \subset Span(S_2)$ Proof: Exercise.

Theorem: Let V be a vector space. Let G C V be a spanning set for V consisting of n vectors. and LCV be a linearly independent Subset consisting of m vectors. Then, $m \le n$ and $\exists H \in G$ consisting of exactly $n-m$ vectors such that $L \cup H$ spans V . (Replacement thm) v

Proof:	We prove by induction on mzo
For m=0, $L = \phi$. Then: $m \le n$. Also, take $H = G$.	
Suppose the statement is true for some mzo. We need to show that the statement is also true for mt.	
So, let $L = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\}$ be a linearly independent subset of V.	
Then: $L' = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\} \subset L$ is linearly independent.	
By induction hypothesis, we have $m \le n$ and	
$\exists H' = \{\vec{u}_1, ..., \vec{u}_{n-m}\} \subset G$ such that	
$L' \cup H' = \{\vec{v}_1, ..., \vec{v}_{n-m}\} \cup I$, ..., $\vec{u}_{n-m} \cup I$ span V.	

-

CERTIFY CONTROLLER CONTROLLER

 \sim \sim

In particular,
$$
\exists a_1, a_2, ..., am, b_1, b_2, ..., b_n-m \in F
$$
 such that
\n
$$
\vec{w}_{mtl} = a_1 \vec{v}_1 + ... + a_m \vec{v}_m + b_n \vec{u}_1 + ... + b_n \vec{u}_{n-m}
$$
\nBut $L = \{\vec{v}_{1, ...,}, \vec{v}_{mtl}\}$ is linearly independent. So, $n-m \ge 1$
\nand one of b_k 's, say b_1 , is $non-zero$ or $\frac{mtl \le n}{mtl \le n}$
\nThis implies, $\vec{u}_1 \in Span \{\vec{u}_1, \vec{v}_{2, ...,} \vec{v}_{mtl}, \vec{u}_{2, ...,} \vec{v}_{n-m}\}$
\n \therefore Take $H = \{\vec{v} \mid \vec{u}_2, ..., \vec{u}_{n-m}\}$.
\nThen $\underbrace{L \cup H}_{mtl} \longrightarrow \text{Span } V$
\n $mtl \rightarrow n-(mtl)$
\nThis completes the induction argument.

Dimension

or 1: Let V be a vector space thaving a finite basis. Then, every basis of V contains the same number of vectors .

and γ be two bases of V . Pf : Let د
ا Since β spans V and γ is line independent, then $\|y\| \leq \|p\|$ (by replacement Thim) Similarly, $| \beta | \leq |\gamma|$ ⇒ 181 - - Ipl .

Definition:

 \bullet

^V is called finite-dimensional if it has ^a finite basis . The dimension of ^V , denoted as dimly , is the number of vectors in ^a basis for ^V . A vector space which is not finite - dimensional is called infinite-dimensional .

o