Lecture 5:

Theorem: Suppose S is a finite spanning set for a vector space V. Then: EBCS which is a basis for V. (A finite spanning set can be reduced to a basis) Proof: If S is lin. independent, then we take B=S. Otherwise, J v, eS such that Span (S \ Evi3) = Span(S) (by lemma) If S EVis is linearly independent, then take B = S > EVis. Othermise, J vzeS Zviz such that Span (S Zvi, vzz) = Span (S Zviz) Repeat this process. '.' S is finite. The process must stop at a linearly independent subset Sk = S1 20,..., Uk) C S and Span(Sk)=Span(S) Take B= Sk

Lemma: Let V be a vector space, and let SICS2CV. Then: ta) Si is linearly dependent => Sz is linearly dependent Si is linearly independent (Sz is linearly independent (b) Span(SI) C Span(SL) Proof: Exercise.

Theorem: Let V be a vector space. Let GCV be a spanning set for V consisting of n vectors. and LCV be a linearly independent subset consisting of m vectors. Then, MEN and EHCG consisting of exactly n-m vectors such that LUH spans V. (Replacement Ham)

Proof: We prove by induction on
$$m \ge 0$$

For $m=0$, $L = \phi$. Then: $m \le n$. Also, take $H = G$.
Suppose the statement is true for some $m \ge 0$. We need to
show that the statement is also true for mti .
So, let $L = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\}$ be a linearly independent subset
of V.
Then: $L' = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\} \subset L$ is linearly independent.
By induction hypothess, we have $m \le n$ and
 $\exists H' = \{\vec{u}_1, ..., \vec{u}_{n-m}\} \subset G$ such that
 $L' \cup H' = \{\vec{v}_1, ..., \vec{v}_m, \vec{u}_1, ..., \vec{u}_{n-m}\}$ span V.

-

In particular,
$$\exists a_1, a_2, ..., a_m, b_1, b_2, ..., b_{n-m} \in F$$
 such that
 $\vec{v}_{m+1} = a_1 \vec{v}_1 + ... + a_m \vec{v}_m + b_1 \vec{u}_1 + ... + b_{n-m} \vec{u}_{n-m}$.
But $L = \{\vec{v}_1, ..., \vec{v}_{m+1}\}$ is linearly independent. So, $n-m \ge 1$
and one of b_k 's , say b_1 , is non-zero
This implies, $\vec{u}_1 \in Span \{\vec{v}_1, \vec{v}_{2,-}, \vec{v}_{m+1}, \vec{u}_{2,-}, \vec{v}_{n-m}\}$
 \therefore Take $H := \{\vec{v}_2, ..., \vec{v}_{n-m}\}$.
Then $L \cup H$ span $V_{m+1} + n-(m+1)$
This completes the induction argument.

<u>Corl:</u> Let V be a vector space having a finite basis. Then, every basis of V contains the same number of vectors.

Pf: Let
$$\beta$$
 and ϑ be two bases of V.
Since β spans V and ϑ is lin. independent,
then $|\vartheta| \leq |\beta|$ (by replacement Thm)
Similarly, $|\beta| \leq |\vartheta|$
 $\Rightarrow |\vartheta| = |\beta|$.

Channel of

Definition:

-

1