Lecture 12: Def: A linear operatu - T: V→ V (where V us finite-dim) is called <u>diagonalizable</u> if \exists an ordered basis β for V sue f hat LTJ_{β} is a diagonal matrix, A square natrix A is called diagonalizable if LA is so.) bservation: Say $\rho = \{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \}.$ If $D = L T J_{\rho}$ is diagonal, then $V \overline{v}_{J} \in \beta$, we have: (D_{ij}) $\top(\vec{v}_j) = \sum_{i=1}^{n} D_{ij} \vec{v}_i = D_{ij} \vec{v}_j = \lambda_j \vec{v}_j$ Conversely, if $T(\vec{v}_j) = \lambda_j \vec{v}_j$ for some $\lambda_1, \lambda_2, ... \lambda_n \in F$, $H^{(4)} = \begin{pmatrix} \int_{\beta}^{R} e^{-\frac{1}{2}} e$ $\begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}$ " . $\frac{\lambda_2}{\sigma}$. .

Def: Let T be a linear operator on a vector space V/F.

\nA non-zero vector
$$
\vec{v} \in V
$$
 is called an eigenvector of T

\nif $\exists \lambda \in F$ s.t. $T(\vec{v}) = \lambda \vec{v}$. In this case, $\lambda \in F$

\nis called an eigenvalue corresponding to the eigenvector \vec{v} .

\nFor a square matrix A e Mn x nCFJ, a non-zero vector $\vec{v} \in F$

\nis called an eigenvector of A if if is an eigenvector of L_A.

\nThat is: $A\vec{v} = \lambda \vec{v}$ for some $\lambda \in F$.

\n λ is called the eigenvalue corresponding to the eigenvector \vec{v} .

À

Prop: A linear operator
$$
T: V \rightarrow V
$$
 (V = fin-dim) is diagonalizable

\niff \exists an ordered basis β for V consisting of eigenvalues of T.

\nIn such case, if $\beta = \overline{\alpha}, \overline{\alpha}, \overline{\alpha}, \overline{\alpha}, \overline{\alpha}\}$, then:

\n
$$
\begin{bmatrix} T J_{\beta} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{1} \end{pmatrix} \\ \text{where } \lambda_{3} \text{ is the eigenvalue of T corresponding to } \overline{\alpha}, \text{ and } \overline{\alpha}
$$
\nwhere $\lambda_{1} \text{ is the eigenvalue of T}$ is the eigenvalue of T.

Example:	\n $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ \n	
Then:	\n $\begin{bmatrix} L_A \end{bmatrix}_\beta = \begin{pmatrix} 4 & 0 \\ 1 & 0 \end{pmatrix}$ \n	Lieck that they are All eigenvectors and β is basis.
Let $T: IR^2 \rightarrow IR^2$ be rotation by $\frac{\pi}{2}$ in counter-clockwise direction.\n		
Check: $T = LA$ where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ \n	for \sqrt{v} is from $T(\vec{v})$ is always perpendicular to \vec{v} .	
Then:	\n $T(\vec{v})$ is always perpendicular to \vec{v} .	
Therefore, $\vec{v} = \vec{v} + \vec{v} = \vec{v}$, $\vec{v} = \vec{v}$, $\vec{v} = \vec{v}$.		
Therefore, $\vec{v} = \vec{v} + \vec{v} = \vec{v}$, $\vec{v} = \vec{v}$.		

 $\frac{1}{2}$ $\frac{1}{2$

Example: Consider T:
$$
C^{\infty}(IR) \rightarrow C^{\infty}(R)
$$
 defined by:

\n
$$
Space of smooth functions
$$
\n
$$
T(f) = f'
$$
\nThen an eigenvector of

\n
$$
df = \lambda f(t)
$$
\nSolution of

\n
$$
\frac{df}{dt} = \lambda f(t)
$$
\n
$$
\frac{df}{dt} = C e^{\lambda t} \quad \text{for some constant } C
$$
\nand $\lambda \in \mathbb{R}$ is an eigenvalue of T.

 \blacksquare

 \sim \sim

Prop: Let $A \in M_{n\times n}(F)$. Then $\lambda \in F$ is an eigenvalue of A
iff: det $(A - \lambda I_n) = 0$.
PI: $\lambda \in F$ is an eigenvalue of A
$\Rightarrow \exists \forall \in F^n \setminus \{\frac{1}{0}\} \setminus S.1$. $A\overrightarrow{v} = \lambda \overrightarrow{v}$
$\Rightarrow (A - \lambda I_n) \overrightarrow{v} = 0$
$\Rightarrow A - \lambda I_n$ is singular
$\Rightarrow A - \lambda I_n$ is not invertible
$\Rightarrow det(A - \lambda I_n) = 0$.

 \sim cm

Def:	The characteristic polynomial of A ∞ with (F) is defined as the polynomial $f_A(t) \stackrel{def}{=} det(A - tIn) \in Pn(F)$
Def:	Let T be a linear operator on an n-dim vector space
V. Choose an ordered basis	B for V. Then, the characteristic polynomial of T is defined as the characteristic polynomial of $[T]_3$.
(i.e. $f_T(t) \stackrel{def}{=} det(TI_A - tIn) \in Pn(F)$)	

 \sim cm

Prop: $f_{\tau}(t)$ is well-defined, i.e. independent of the choic of β . Pf : If ' is another ordered basis for V , then: $[T]_{\beta}$, = G T $[T1]_{\beta}$ Q $($ Q = LI_{β} ¹, $)$ Then : det ($LTJ_{\beta'}$ - $LTn)$ T $[1]_{p}$ $(2 - t)$ in $=$ det $($ \circledR $(1TJ_{\beta} - U^{L_{n}})$ Q) = det (\emptyset) det ([T], -t In) det \emptyset =)_T(t).

Pop:	Let A e MnxnIF). Then:
. $f_A(t)$ is of degree n and with leading coefficient	
$(-1)^n$.	
. A has at most n distinct eigenvalues.	
Def:	A polynomial $f(t) \in P(F)$ splits over F if \exists
C, a., a., a., an f s.t. $f(t) = c(t-a_1)(t-a_2) \cdots (t-an)$	
Prop:	The characteristic polynomial of a diagonalizable
Linear operator on a finite-dim Vector space $V \mid F$	
Splits over F.	

 $\begin{array}{c|c|c|c} \hline \multicolumn{3}{c|}{\textbf{...}} & \multicolumn{3}{c|}{\textbf{...}} \\\hline \multicolumn{3}{c|}{\textbf{...}} & \mult$

 \blacksquare

$$
\frac{Pf}{H} = II \text{ V is a n-dim and } T: V \ni V \text{ is diagonalizable,}
$$
\n
$$
\text{then } \exists \text{ a basis } \rho \in V \text{ s.t.}
$$
\n
$$
[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & \lambda_3 & 0 \end{pmatrix}
$$
\n
$$
\text{Then: } f_T(t) = det \left([T]_{\beta} - t I_n \right)
$$
\n
$$
= (-1)^n (t - \lambda_1) (t - \lambda_2) \cdots (t - \lambda_n)
$$

 \sim \sim

Prop:	Let T be a linear operator on a vector space V and	
let A be an eigenvalue of T. Then, $\vec{v} \in V$ is		
an eigenvector of T corresponding to A iff:		
Pr:	Exercise.	$\vec{v} \in N(T - \lambda I_V) \setminus \vec{\lambda} \cdot \vec{0} \cdot \vec{0}$
Def:	Let T be a linear operator on a vector span V	
and let A be an eigenvalue of T.		
Then: the subspace E_{λ} : $\vec{B} \cdot \vec{B} \cdot \vec{0} \cdot \vec{0} \cdot \vec{0} \cdot \vec{0}$		
is called the eigenspau of T corresponding to A.		
Eigenspaus of a matrix A E Mnxn(F) is defined as		
Thus: of L_A		

- 11

Example: Consider
$$
A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \in M_{2X2} \text{ LIR}
$$
.

\n5A(t) = det $(A - t Iz) = det \begin{pmatrix} 1-t & 1 \\ 4 & 1-t \end{pmatrix}$

\n $= \frac{1^2 - 2t - 3}{(4 - t)^2} = \frac{(t-3)(t+1)}{2}$

\nFor $A_1 = 3$, $B_1 = \begin{pmatrix} 2t & 1 \\ 4 & -\lambda_1 I_2 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 4 & -2 \end{pmatrix}$ $\begin{pmatrix} RRF \\ -2 & 1 \\ 0 & 0 \end{pmatrix}$

\nFor $A_1 = N(B_1) = \begin{cases} \frac{1}{2}t \begin{pmatrix} 1 \\ 2 \end{pmatrix} = t \in IR_1^2$

\nFor $A_2 = -1$, $B_2 = A - \lambda_2 I_2 = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & -k_1 \\ 0 & s \end{pmatrix}$

\n $E_{\lambda_2} = N(B_2) = \begin{cases} \frac{1}{2}t \begin{pmatrix} 1 \\ -2 \end{pmatrix} = t \in IR_2^2$

 \sim 1000

Choose
$$
\beta = \{(\begin{array}{c} 1 \\ 2 \end{array}), (\begin{array}{c} 1 \\ -2 \end{array})\}
$$
 as a basis for IR².

\nBasic of eigenvector:

\nThen:

\n
$$
\begin{bmatrix} \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end
$$

 $\overline{4}$

 α

 \bullet