
Lecture 11: ( linear )
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Definition : Let V and W be two vector spaces .

We say V is isomorphic to W if I an invertible

linear transformation T : V→W .

In this case
,

T is called an isomorphism from V onto W .
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Thin : Let V and W be finite - dimensional vector spaces .

Then : V is isomorphic to W iff dim ( V ) = dim Lw )
.

Proof : ( ⇒ ) This direction follows from previous Lemma .

(E) : Suppose dimcv ) = dimlw ) Eth and let

p= { I'
, ,
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,

.
. .
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Tin } be basisfor V ;

Ve I Ti , ,
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, . . .

,
Jin 's be basis for W .

Then I linear T : V→w such that Teti I = i

for i = 1,2 , .  .

,
n .

By construction ,
T is onto and dim LV ) = dim cu ) .

So ,
T is one - to - one . I T is invertible

,



Corollary : Let V be a vector space over F .

Then : V is isomorphic to Fn iff dim ( V ) = n



Space of linear transformation

Pep : Let V and W be vector spaces over f .

Then : the set £ ( V
,

W ) of all linear transformations

from V to W is a vector space over F under

the following operations : for linear T
,

U : V → W
,

we define : C Ttu ) : V → W by I Ttu ) l If= TCIHULI ) .

and for
any a EF

,
we define AT :VFW by
( AT )
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Remark : If W -
- V

,
we write :

Slv ) instead of LIV
,

V )
.



Lemma : Let V and W be finite - dim vector spaces with ordered bases

p and V respectively .
Let T

,

U : V → w be linear
.

Then : ca ) [ Tt U ] ! = [ TIF t [ Utp

Cb ) [ AT ) } = a ETTY ta EF
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Thin .

. Let V and W be finite - dimensional vector spaces over f
.

with dimension n and m respectively . Let p and 8 be the

ordered bases for V and W respectively ,

Then : the map Tz :L ( V
,

W ) → Mm×nLF ) defined

by ECT ) = [ Ttp is an isomorphism .

Are :

dim ( LCV ,
WI ) = dim C V ) dimcw ) = nm

.



Proof : I is linear i I ( Tt U ) = [ Tt Utp = ETT pot Euler
= ECT ) t ECU )

IC AT ) -

- [ AT ] ! =
a [ Tip

= a ECT ) .

I is bijective .
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Def Let p
be the ordered basis for an n - dimensional vector space .

V over F
. The map Pp : V → F

h

,
Its EXIP is

called standard representation of V with respect to
p ,

Prop :

Xp is an isomorphism ,



Given vector spaces V and W of dimension n and m
, with ordered

bases p and 8 respectively .
Then

,

for any T : V → w ( linear )
,

we have :

T -
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[ Ttp e Fn Fm C wTr -
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⇒ GOT = LA04pct )

where A  = CT ] ! ⇐ [ Tirith = C Ttp [ TIP



Change of coordinates

Prop : Let p and p
' be two  ordered bases for a finite - dim

.

vector space V
,

and let Q = [ Iv ]p?
* V ¥ ✓

p
' P

Then : La ) Q is invertible

(b) For all TeV
,

[ I ]p= QtvJpl

Proof i Ca ) Since Iv is invertible
,

Q is invertible .

(b) Let TEV .
Then : [ TIP = C Iv LEI ]p=LTTTIP '
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Def : The matrix Q = C Iip , is called the Q

change of coordinate matrix from
p

'

to p .



Remark : To compute Q = C Iv ]pi ,

it f- EXT .kz , . .
. ,In } and p '=E Ii

,
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.

,

In ' }
,
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Example " Consider V = IR ?

A- HIM :) , 3
, p :L (d) Hold 913

Then : Q -

- I Iip ? = ( ! ÷ & )
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'
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⇒ crisp . -

.

Q'
' cute

Let I = (3) EIR
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[ TIP , = Q
"
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-
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Proposition : Let T be a linear operator on finite - dim V

Let p and p
' be ordered bases of V . Suppose Q = [ Iv ]pi

.

Then : [ T ]p ,
= Oi

'

CTIPQ P TJ → eTIP
Proof : [ TIP , = [ Iip ? [ Tff,

'

-_ [ Ivo TIP? V →
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Rench : A linear T : V → V is called linear operator .



Corollary ' Let A E MnxnLF ) and let 8 -
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,
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Example : Let T : IRS 1122 be the reflection about the line y=zx .

want to compute I TIP ,
where p

-

- { ( b) I l % }
.

a y=z×
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'

= I ( L) , ( I ) } for IR
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I TIP ' = E' ET )
p

Q

⇐ [ TIP = Q C TIP . Q
"
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,
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Def : Given two matrices A
,

B E Mnxnlf )
.

We say B is similar
to A if I Q E Nlnxn set .

B = Q'
' AQ .


