Lecture 11: (linear) Recall: . T : V -> W is invertible iff T is bijective $\bigoplus_{n=0}^{\infty} \exists \overline{T}^{-1} \ni \overline{T}^{-1} \circ T = I_{V} \text{ and } T \circ T^{-1} = I_{W}$ \cdot T^{-1} is linear. $5. t.$ \cdot $[\top^{-1}]_8^{\beta} = (\top]_8^{\gamma}$

Thm: Let V and W be finite-dimensional vector spaces.	
Then: V is isomorphic to W iff dim(V) = dim(W)	
Proof:	(\Rightarrow) Thus direction follows from previous Lemma.
(\Leftarrow): Suppose dim(V) = dim(W) = m and let	
$\beta = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ be basis for V;	
$y = \{\vec{w}_1, \vec{u}_2, ..., \vec{w}_n\}$ be basis for W.	
Then \exists Linear T: V\nightharpoonup W such that T(\vec{v}_i) = \vec{\omega}_i	
for $i=1,2,...,n$.	
By construction, T is onto and dim(U) = dim(U).	
So, T is one-to-one. \therefore T is invertible,	

Space of linear transformation Prop: Let V and W be vector spaces over F. W) of all linear transformation Then: the set LCV , from V to W is a vector space over F under the following operations: for linear $T, U: V \rightarrow W$, we define: $(T+u): V \rightarrow W$ by $(T+u)(\vec{x}) = T(\vec{x})+U(\vec{x})$ nd for any $a \in F$, we define $aT: V \rightarrow W$ by = a [(x̄) (AT) \overline{v} FILELIA Ti-VIII v. W) Pf: Exercise Remark: If $W = V$, we write: \cup (V) instead of $\mathcal{L}(V, V)$.

Let V and W be finite-dim vector spaces with ordered bases Le mma: β and γ respectively. Let $T, U : V \rightarrow W$ be linear. Then: $(a) \quad \Gamma + u \big]_{\beta}^{3} = \Gamma T \big]_{\beta}^{8} + \left[u \big]_{\beta}^{8}$ (b) $[aT]_{\beta}^{\gamma} = a[T]_{\rho}^{\gamma}$ $\forall a \in F$ $\begin{bmatrix} aT \end{bmatrix}^{\gamma}_{\beta} =$
 $\overline{\begin{bmatrix} \overline{v}_{1},.., \overline{v}_{n} \end{bmatrix}}$ $\left[\begin{array}{ccc} \ddots & \sqrt{2} & \sqrt{2} \\ \ddots & \ddots & \sqrt{2} & \sqrt{2} \\ \end{array}\right]$ Pf : Exercise.

Thm: Let V and W be finite-dimensional vector spaces over F.	
With dimensions n and m respectively. Let S and S be the ordered bases for V and W respectively.	
Then: the map	$\overline{\Phi}: L(V, W) \rightarrow M_{mkn}(F)$ defined by $\overline{\Phi}(T) = E T J_B^S$ is an isomorphism.
Cor:	$\dim(L(V, W)) = \dim(V) \dim(W) = N M$.

Proof:	$\overline{\Phi}$ is linear : $\overline{\Phi}(T+u) = T+u\overline{1}^{\gamma} = TT_{\beta} + Lu\overline{1}^{\gamma}$
$\overline{\Phi}(aT) = [aT]_{\beta}^{\gamma} = a[T]_{\beta} + Lu\overline{2}(u)$	
$\overline{\Phi}$ is bijective:	
$\overline{\Phi}$ and $A = (A_{ij}) \in M_{min}(F)$, bounded by the sum that $\overline{\Phi}(T) = \overline{A}$.	
$\overline{\Pi}:\overline{V} \rightarrow W$ such that $\overline{\Phi}(T) = \overline{LT}_{\beta} = \overline{A}$.	
$\beta = \overline{I} \overline{V}_{i_1} \overline{V}_{i_2, \dots, \overline{V}} \overline{V}_{i_1} \overline{S}_{i_2, \dots, \overline{V}} \overline{S}_{i_2, \dots, \overline{V}} \overline{V}_{i_1} \overline{S}_{i_2, \dots, \overline{V}} \overline{V}_{i_1} \overline{S}_{i_2, \dots, \overline{V}} \overline{V}_{i_1} \overline{V}_{i_2, \dots, \overline{V}} \overline{V}_{i_1} \overline{V}_{i_$	

Def Let
$$
\beta
$$
 be the ordered basis for an n-dimensional vector spana

\nV over F. The map $\varphi_{\beta}: V \to F^{n}, \tilde{x} \mapsto LX^{n} \varphi$ is called standard representation of V with respect to β .

\nProof:

\n φ_{β} is an isomorphism.

Change of coordinates		
Prop: Let β and β' be two ordered bases for β finite-dim.		
Vector span U, and let $Q = [\text{Iv}]_{\beta'}$.	$\sqrt{\frac{I_{v}}{\beta'}}$	
Then: (a) Q is invertible		
(b) For all $\vec{v} \in V$, $[\vec{v}]\hat{J} = Q[\vec{v}]\hat{J}^{\prime}$		
Proof:	(a) Since I_{v} is invertible.	$(Q$ is invertible.
(b) Let $\vec{v} \in V$. Then: $[\vec{v}]\beta = [\text{Iv}(\vec{v})]\beta = [\text{Iv}]\beta^{\prime}$ [$\vec{v}]\beta^{\prime}$		
Def:	The matrix $Q = [\text{Iv}]\beta^{\prime}$ is called the Q change of coordinate matrix from β' to β .	

 \overline{a} $\overline{$

Remark:	To compute $Q = \mathbb{E} \mathbb{I} \vee \mathbb{I} \underset{\beta'}{\beta'}$,
U	$\beta = \mathbb{I} \times \mathbb{I}, \times \mathbb{I}, \dots, \times \mathbb{I} \times \mathbb{I}$ and $\beta' = \mathbb{I} \times \mathbb{I}, \times \mathbb{I}, \dots, \times \mathbb{I} \times \mathbb{I} \times \mathbb{I}$;
then:	$Q = \left(\mathbb{I} \mathbb{I} \vee (\overrightarrow{x}, 1) \right _{\beta} = \mathbb{I} \times \mathbb{I}$

Example: Consider
$$
V = IR^3
$$
.

\n
$$
\beta = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}, \beta' = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}
$$
\n
$$
\beta = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}, \beta' = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}
$$
\n
$$
\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}
$$
\n
$$
\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} \right\} = \left(\begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} \right\}
$$
\nLet $\vec{v} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \in \mathbb{R}^3$. Then: $\begin{pmatrix} \vec{v} \\ \vec{v} \end{pmatrix} \beta = \begin{pmatrix} 2 \\ 4 \\ 4 \end{pmatrix}$ \n
$$
\begin{pmatrix} \vec{v} \\ \vec{v} \end{pmatrix} \gamma = \left(\begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix} \right) = \left\{ \begin{pmatrix} 5/2 \\ -1/2 \\ 8/2 \end{pmatrix} \right\}
$$

 $\begin{array}{c|c|c|c} \hline \multicolumn{3}{c|}{\textbf{m}} & \multicolumn{3}{c|}{\textbf{m}} \\ \hline \multicolumn{3}{c|}{\textbf{m}} & \mult$

Proposition: Let T be a linear operator on finite-dim V Let β and β' be ordered bases of V. Suppose $Q = \Gamma \operatorname{Iv} \frac{1}{\beta'}$. Then : $[T]_{\beta'} = Q^{\top}[T]_{\beta} Q \qquad \beta \qquad T$ $\begin{pmatrix} \beta & \top \\ \end{pmatrix}$ $\begin{pmatrix} \beta \\ \end{pmatrix}$ as CTJ_{β} Proof: QLT] $p' = L I_v J_b^{\beta} L T J_{\beta'}^{\beta'} = L I_v \cdot T J_{\beta'}^{\beta}$ $=$ [T. Iv] β' $N \rightarrow \gamma$ $V \stackrel{1}{\rightarrow} V \stackrel{1}{\rightarrow} V$ $LTLY$ _p $LILY$ _p' p ' P P $=$ $LTJ_{\beta}Q$ Remarh: A linear $T: V \rightarrow V$ is called linear operator.

Corollary: Let
$$
A \in M_{n\times n}
$$
 (F) and let $Y = \overline{\{x_{1}, x_{2}, ..., x_{n}\}}$ be
an ordered basis for F^{n} .
Then: $[L_{A}]_{Y} = Q^{T} A Q$, $Q = (\overline{X_{1}^{x_{1}} X_{2}} - \overline{X_{1}^{x_{2}}})$
 $\Leftrightarrow [L_{A}]_{Y} = Q^{T} L L_{A} L_{\beta} Q$
shonded
books.
So Δ

 $Example: Let T: IR^2 \rightarrow IR^2$ be the reflection about the line y=2x. Want to compute LTJ_{ρ} , where $\beta = \{(\begin{array}{c} 1 \\ 0 \end{array}), (\begin{array}{c} 0 \\ 1 \end{array})\}$ Consider $\beta' = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right\}$ for \mathbb{R}^2 $2,1$ \cdot $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\beta'} = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\beta'} \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\beta'} \right)$ $L = \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{i} \quad [1]_{\beta} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $T \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ $T \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ \cdot Q = $\left[\Gamma_{IR}J_{\beta'}^{\beta}\right] = \left(\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array}\right) \Rightarrow Q^{-1} = \frac{1}{5}\left(\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right)$

$$
\begin{array}{lll}\n\therefore & \[\Gamma\rrbracket_{\beta'} = \mathbb{Q}^T \mathbb{C} \top \mathbb{J}_{\beta} \& \\
\text{(3)} & \[\Gamma\rrbracket_{\beta'} = \mathbb{Q} \mathbb{C} \top \mathbb{J}_{\beta'}, \mathbb{Q}^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}.\n\end{array}
$$
\n
$$
\frac{\text{Def: } \{\text{given two matrices A, B \in Mnm(F).}\}}{\text{We say B is similar to A if } \exists \mathbb{Q} \in Mnm \text{ s.4.}}\n\qquad\n\begin{array}{lll}\n\mathbb{S} = \mathbb{Q}^{-1} \land \mathbb{Q}.\n\end{array}
$$