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Invertibility and Isomorphism

Definition : Let V and W be vector spaces and let T :V→W

be linear . We can say T is invertible if it is bijective

( 1 - I and onto ) so that IT
-1

: W → V Such that ?

T
- '

o T = Iv and To T
- '

= Iw

Remark : If V and W are of equal finite - dimensions
,

then T : ✓ → w is invertible iff rank = dimcv )
.
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Proposition : The inverse T
- I

: W → ✓ of an
invertible linear

transformation T : V→w is linear .
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Example :L
.

Let A E Mn×nCF ) is invertible .

Then : LA .

. F
"

→ F
" defined by LACI

'

)= A I
.

is invertible and the inverse of LA is :

(LAT
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= La - I
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Lemma : Suppose T : V -7W is invertible .

Then : dim LV ) c to iff dim ( W ) 's to

And in this case
,

dimly = dim l W )

Proof : Suppose dimly = n s to and
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a basis for V
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Apply the same argument to T
"

to show that

dimer ) Edina )

In particular ,
if dim CV ) a to and dim Cw ) a to dimly

then i dimly s dim C w ) and dum ( w ) E dimer ) ⇒ dints



Remark: If T : ✓ → w is onto
,

( linear )

then : dim ( WI E dim ( V )



Proposition i Let V and W be finite - dimensional vector spaces

with ordered basis p and 8 respectively .

Let T :V→W be linear transformation .

Then : T is invertible iff [ T ] ! is invertible .

Furthermore
, [ T

- ' If = ( [ T ] ! )
"

- -
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Proof :

Suppose Tis invertible . Then : dim ( V ) = dim Cw)
.

- n

Since To T
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Conversely
, suppose A : = [ T ] ! is invertible . ( ⇒ dimly --dimCwY
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dim CV ) = dim ( W )
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. We only need to show Tis one - to - one
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Corollary : Let V be a finite - dimensional vector space with ordered

basis p . Let T : V → V be a linear transformation .

Then : T is invertible iff [ TIP is invertible

Furthermore ,
ET

"

Jp = ( [ TIP)
"
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Corollary : Let AE Mmm C F )
.

Then : A is invertible

iff La is invertible
. ( La )

- '
= LA - I


