MATH2040A/B Homework 2 Solution

(Sec 1.4 Q5) Ans: (e) True (g) True

(Sec 1.4 Q6) Ans: $\forall (x_1, x_2, x_3) \in \mathbb{F}^3$, we may assume

 $y_1(1, 1, 0) + y_2(1, 0, 1) + y_3(0, 1, 1) = (x_1, x_2, x_3)$

and solve the system of linear equation. We got

 $y_1 = \frac{1}{2}$ $rac{1}{2}(x_1-x_2+x_3),$ $y_2 = \frac{1}{2}$ $rac{1}{2}(x_1+x_2-x_3),$ $y_3 = \frac{1}{2}$ $\frac{1}{2}(-x_1+x_2+x_3)$

- (Sec 1.4 Q12) Ans: To prove it's sufficient we can use Theorem 1.5 and then we know $W = \text{span}(W)$ is a subspace. To prove it's necessary we can also use Theorem 1.5. Since W is a subspace contains W, we have span $(W) \subset W$. On the other hand, it's natural that $W \subset \text{span}(W)$.
- (Sec 1.4 Q13) Ans: $\forall x \in \text{span}(S_1)$, $x = \sum_{i=1}^n a_i e_i$, where e_1, \dots, e_n are in S_1 and so in S_2 , so $x \in \text{span}(S_2)$, which means span $(S_1) \subset \text{span}(S_2)$. Since $S_2 \subset V$, by Theorem 1.5 we have span $(S_2) \subset V$. We also know $V = \text{span}(S_1) \subset \text{span}(S_2)$, so $V = \text{span}(S_2)$.
- (Sec 1.4 Q15) Ans: $\forall x \in \text{span}(S_1 \cap S_2)$, $x = \sum_{i=1}^n a_i e_i$, where e_1, \dots, e_n are in $S_1 \cap S_2$, so x is in span (S_1) and also in span(S₂), which means $x \in \text{span}(S_1) \cap \text{span}(S_2)$. Let $S_1 = \{(0,1)\}, S_2 =$ $\{(1,0)\}\$, so $\text{span}(S_1 \cap S_2) = \{(0,0)\} = \text{span}(S_1) \cap \text{span}(S_2)$. Let $S_1 = \{(0,1), (1,0)\}\$, $S_2 =$ $\{(-1,0), (0,-1)\}\$, so $\text{span}(S_1 \cap S_2) = \{(0,0)\}\neq \mathbb{R}^2 = \text{span}(S_1) \cap \text{span}(S_2).$
- (Sec 1.5 Q2) Ans: (d) Linearly dependent. (h) Linearly independent. (j) Linearly dependent.
- (Sec 1.5 Q9) Ans: It's sufficient since if $u = tv$ for some $t \in \mathbb{F}$ then we have $u tv = 0$. While it's also necessary since if $au + bv = 0$ for some $a, b \in \mathbb{F}$ with at least one not zero, then we may assume $a \neq 0$ and then $u = -\frac{b}{a}v$.
- (Sec 1.5 Q14) Ans: By the definition it's easy to prove the sufficiency. Now we are going to prove the necessity. If S is linearly dependent, S can be $\{0\}$. Let $S \neq \{0\}$ is linearly dependent, then we have $a_0u_0 + a_1u_1 + \cdots + a_nu_n = 0$, so $v = u_0 = \frac{1}{a_0}(a_1u_1 + \cdots + a_nu_n)$.
- (Sec 1.5 Q16) Ans: We can prove it by contrapositive statement. \Rightarrow : If there is a finite subset $\{u_1, u_2, \dots, u_n\} \subset S$ is linearly dependent, then there are some not all zero $a_1, a_2, \dots, a_n \in \mathbb{R}$ such that

$$
a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0,
$$

Then S is also linearly dependent.

 \Leftarrow : If S is linearly dependent, then there exist vectors $u_1, u_2, \cdots, u_n \in S$ and some not all zero $a_1, a_2, \dots, a_n \in \mathbb{R}$ such that

$$
a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0,
$$

Then finite subset $\{u_1, u_2, \dots, u_n\} \subset S$ is also linearly dependent.

(Sec 1.5 Q19) Ans: If there are some scalars $a_1, a_2, \dots, a_n \in \mathbb{R}$ such that

$$
a_1 A_1^t + a_2 A_2^t + \cdots a_n A_n^t = 0,
$$

then we have $(a_1A_1 + a_2A_2 + \cdots + a_nA_n)^t = 0$, which is equals to $a_1A_1 + a_2A_2 + \cdots + a_nA_n = 0$. Since $\{A_1, A_2, \dots, A_n\}$ is linearly independent, we know that $a_1 = a_2 = \dots = a_n = 0$ and $\{A_1^t, A_2^t, \cdots, A_n^t\}$ is linearly independent.