MATH2040A/B Homework 7 Solution

(Sec 5.1 Q2(c))

$$T\begin{pmatrix}0\\1\\1\end{pmatrix}=\begin{pmatrix}0\\-1\\-1\end{pmatrix}=-1\begin{pmatrix}0\\1\\1\end{pmatrix},\ T\begin{pmatrix}1\\-1\\0\end{pmatrix}=\begin{pmatrix}1\\-1\\0\end{pmatrix}=1\begin{pmatrix}1\\-1\\0\end{pmatrix},\ T\begin{pmatrix}1\\0\\2\end{pmatrix}=\begin{pmatrix}-1\\0\\-2\end{pmatrix}-1\begin{pmatrix}1\\0\\-2\end{pmatrix}$$

Hence all vectors in β are eigenvectors and

$$[T]_{\beta} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(Sec 5.1 Q2(f)) Ans: We have

$$T\begin{pmatrix}1&0\\1&0\end{pmatrix}=-3\begin{pmatrix}1&0\\1&0\end{pmatrix}, T\begin{pmatrix}-1&2\\0&0\end{pmatrix}=\begin{pmatrix}-1&2\\0&0\end{pmatrix}, T\begin{pmatrix}1&0\\2&0\end{pmatrix}=\begin{pmatrix}1&0\\2&0\end{pmatrix}, T\begin{pmatrix}-1&0\\0&2\end{pmatrix}=\begin{pmatrix}-1&0\\0&2\end{pmatrix}$$

Hence all vectors in β are eigenvectors and

$$[T]_{\beta} = \begin{pmatrix} -3 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(Sec 5.1 Q3(c)) Ans: $\det(A - \lambda I) = -(i - \lambda)(i + \lambda) - 2$, solving gives $\lambda = 1, -1$. For $\lambda = 1$, $A \sim \begin{pmatrix} 1 & -0.5 - 0.5i \\ 0 & 0 \end{pmatrix}$ Hence an eigenvector of A is $(0.5 + 0.5i, 1)^T$.

For $\lambda = -1$, $A \sim \begin{pmatrix} 1 & 0.5 - 0.5i \\ 0 & 0 \end{pmatrix}$ hence an eigenvector of A is $(-0.5 + 0.5i, 1)^T$. Together, letting $Q := \begin{pmatrix} 0.5 + 0.5i & -0.5 + 0.5i \\ 1 & 1 \end{pmatrix}$, we have $Q^{-1}AQ = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Together, letting
$$Q := \begin{pmatrix} 0.5 + 0.5i & -0.5 + 0.5i \\ 1 & 1 \end{pmatrix}$$
, we have $Q^{-1}AQ = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

(Sec 5.1 Q3(d)) Ans: $\det(A - \lambda I) = -\lambda(1 - \lambda)^2$. We have eigenvalues $\lambda = 0, \lambda = 1$. For $\lambda = 0$, $A \sim \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$ hence (1/2, 2, 1) is an eigenvector.

When $\lambda = 1$, $A \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, hence (0, 1, 0), (1, 0, 1) are two eigenvectors.

Setting
$$Q = \begin{pmatrix} 1/2 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, we have $Q^{-1}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(Sec 5.1 Q4(g)) Ans: We consider $\alpha := \{1, x, x^2, x^3\}$ the standard basis. Then

$$[T]_{\alpha} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, [T]_{\alpha} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}, [T]_{\alpha} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 2 \\ 0 \end{pmatrix}, [T]_{\alpha} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -8 \\ 6 \\ 0 \\ 3 \end{pmatrix}$$

and hence

$$[T]_{\alpha} = \begin{pmatrix} -1 & -2 & -2 & -8 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Hence the eigenvalues are -1, 1, 2, 3.

When $\lambda = -1$, We can get that $(1,0,0,0)^T$ is an eigenvector with eigenvalue -1 by solving the linear equation $(-I - [T]_{\alpha})x = 0$. (Any non-all-zeros solution of the equation is an eigenvector with eigenvalue -1).

When $\lambda = 1$, similarly we can get that $(-1, 1, 0, 0)^T$ is an eigenvector with 1 eigenvalue 1

When $\lambda = 2$, similarly, we can get that $(-2, 0, 3, 0)^T$ is an eigenvector with 1 eigenvalue 2

When $\lambda = 3$ similarly, we can get that $(-7, 6, 0, 2)^T$ is an eigenvector with 1 eigenvalue 3

Let $\beta = \{1, -1 + x, -2 + 3x^2, -7 + 6x + 2x^3\}$, then

$$[T]_{\beta} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

 $(\text{Sec 5.1 Q4(h)}) \text{ Ans: We simply observe that } T \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, T \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, T \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, T \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ So the basis is } \beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$

(Sec 5.1 Q6) Ans: We prove another statement: if $V \cong V'$, $\phi: V \to V'$ an isomorphism, $T: V \to V$ a linear operator on V, then if $Tv = \lambda v$,

$$(\phi \circ T \circ \phi^{-1})\phi(v) = \lambda \phi(v)$$

 $(\phi \circ T \circ \phi^{-1})\phi(v) = \phi \circ Tv = \lambda \phi(v)$

Now take $V' = \mathbb{F}^{\dim V}$, β a basis of V' and consider $\phi(v) = [v]_{\beta}$.

- (Sec 5.1 Q8) (a) T is invertible if and only if $\det(T) \neq 0$ if and only if $\det(T 0I) \neq 0$ if and only if 0 is not an eigenvalue of T.
 - (b) From (a), eigenvalues are not zero. Suffices to show one way since T, T^{-1} are inverse to each other.

$$Tv = \lambda v$$

$$1\lambda v = T^{-1}v$$

so λ^{-1} is an eigenvalue of T^{-1} .

(c) 1. Statement: $A \in F^{n \times n}$ is invertible if and only if 0 is not an eigenvalue of A.

Proof: Consider $T = L_A$.

2. Statement: $A \in F^{n \times n}$ is invertible. A Scalar λ is an an eigenvalue of A if and only if λ^{-1} is an an eigenvalue of A^{-1} .

Proof: Consider $T = L_A$.

(Sec 5.1 Q15) (a) $T^m(x) = T^{m-1}(Tx) = T^{m-1}(\lambda x) = \lambda T^{m-1}(x)$.

Repeating it m-1 times, we get $T^m(x) = \lambda^m x$.

(b) Let $A \in F^{n \times n}$, and let x be an eigenvector of A corresponding to the eigenvalue λ . For any positive integer m, prove that x is an eigenvector of A^m corresponding to the eigenvalue λ^m .

Proof: Consider $T = L_A$ and using $(L_A)^k = L_{A^k}$ for $\forall k \in N^+$.

- (Sec 5.1 Q20) Ans: $\det(A tI) = f(t)$, hence $a_0 = f(0) = \det(A)$. Hence $a_0 \neq 0$ if and only if $\det(A) \neq 0$ if and only if A invertible.
- (Sec 5.1 Q22) (a) We assume $g(t) = \sum_{k=0}^{n} a_k x^k$. Using the conclusion of Q15 Sec 5.1, $g(T)(x) = \sum_{k=0}^{n} a_k T^k(x) = \sum_{k=0}^{n} a_k (\lambda^k x) = (\sum_{k=0}^{n} a_k \lambda^k) x = g(\lambda) x$.

- (b) Let $A \in F^{n \times n}$, and let g(t) be a polynomial with coefficients from F. If x is an eigenvector of A corresponding to the eigenvalue λ , then $g(T)(x) = g(\lambda)x$. Proof: Consider $T = L_A$ and using the results of Q15.
- (c) We have $\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \end{pmatrix} = 4 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ Then $g(A) = 2 \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 14 & 10 \\ 15 & 19 \end{pmatrix}$ and $g(\lambda) = g(4) = 2 \cdot 4^2 - 4 + 1 = 29$. Hence $g(A)(x) = \begin{pmatrix} 14 & 10 \\ 15 & 19 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 58 \\ 87 \end{pmatrix} = 29 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = g(\lambda)x$