MATH2040A/B Homework 1 Solution

(Sec 1.2 Q08) Ans:

 $(a + b)(x + y) = (a + b)x + (a + b)y$ by VS 7 $= ax + bx + au + bu$ by VS 8

(Sec 1.2 Q11) Ans:

- (VS 1) Let $x, y \in Z$, $x + y = 0 + 0 = y + x$.
- (VS 2) For $x, y, z \in Z$,

$$
(x + y) + z = (0 + 0) + 0
$$

= 0 + 0
= 0 + (0 + 0)
= x + (y + z)

- (VS 3) There exists zero element $0 \in V$, so $x + 0 = 0 + 0 = 0 = x$
- (VS 4) For any $x \in V$, there exists $y = x$ and $x + y = 0 + 0 = 0 = x$
- (VS 5) Let $x \in V$, since $c0 = 0$ for any c , thus $1x = 0 = x$.
- (VS 6) For any $a, b \in F$ and $x \in V$, we have $(ab)x = (ab)0 = 0 = a0 = a(bx)$
- (VS 7) For any $a \in F$ and $x \in V$, we have $a(x + y) = a(0 + 0) = a0 = 0 = 0 + 0 = a0 + a0 = 0$ *ax* + *ay*
- (VS 8) For any $a, b \in F$ and $x \in V$, we have $(a+b)x = (a+b)0 = 0 = 0+0 = a0+b0 = ax+bx$
- (Sec 1.2 Q13) Ans: Assume *V* is a vector space, then the zero element in *V* is unique. Since $(a_1, a_2)+(0, 1)$ $(a_1 + 0, a_2) = (a_1, a_2), (0, 1)$ is the zero element. For $(1, 0)$, there must exists (a, b) such that $(1,0) + (a,b) = (0,1)$, i.e. $(1 + a, 0 * b) = (0,1)$, which is impossible.
- (Sec 1.2 Q17) Ans: *V* isn't a vector space over *F*. Using (VS8), we have $(a_1, 0) = (1 + 1)(a_1, a_2)$ $1(a_1, a_2) + 1(a_1, a_2) = (a_1, 0) + (a_1, 0) = (2a_1, 0)$, for any $a_1 \in F$. So $a_1 = 2a_1$ i.e. $a_1 = 0$ for any $a_1 \in F$. However, *F* is a field. There is a contradiction.
- (Sec 1.2 Q21) Ans: It is obvious that it is closed under multiplication and addition.

(VS 1) Let
$$
(s,t)
$$
, $(x,y) \in Z$, $(s,t) + (x,y) = (s+x,t+y) = (x+s,y+t) = (x,y) + (s,t)$.
(VS 2) For (x_1, y_1) , (x_2, y_2) , $(x_3, y_3) \in Z$,

$$
((x_1, y_1) + (x_2, y_2)) + (x_3, y_3) = (x_1 + x_2, y_1 + y_2) + (x_3, y_3)
$$

= $(x_1 + x_2 + x_3, y_1 + y_2 + y_3)$
= $(x_1, y_1) + ((x_2 + x_3, y_2 + y_3))$
= $(x_1, y_1) + ((x_2, y_2) + (x_3, y_3))$

- (VS 3) There exists zero element $0_W \in W$, $0_V \in V$, so the zero element in *Z* is simply $(0_V, 0_W)$.
- (VS 4) Let $(x, y) \in Z$, then $x \in V$, $y \in W$, there exist $u \in V$, $v \in W$ such that $x + u = 0_V$, $y + v = 0$ *W*. Then $(x, y) + (u \cdot v) = (x + u, y + v) = (0_V, 0_W)$.
- (VS 5) Let $(x, y) \in Z$, $1(x, y) = (1x, 1y) = (x, y)$. (VS 6) Let $a, b \in F$ and $(x, y) \in Z$, $(ab)(x, y) = ((ab)x, (ab)y) = (a(bx), a(by)) = a(b(x, y)).$
- (VS 7) Let $a \in F$ and $(x, y), (u, v) \in Z$, $a((x, y)+(u, v)) = a(x+u, y+v) = (a(x+u), a(y+v)) =$ $(ax + au, ay + av) = (ax, ay) + (au, av) = a(x, y) + a(u, v).$
- (VS 8) Let $a, b \in F$ and $(x, y) \in Z$, $(a + b)(x, y) = ((a + b)x, (a + b)y) = (ax + bx, ay + by) =$ $(ax, ay) + (bx, by) = a(x, y) + b(x, y).$
- (Sec 1.3 Q10) Ans: For W_1 , the zero vector belongs to W_1 .

For any $x, y \in W_1$, denoting that $x = (a_1, ..., a_n), y = (b_1, ..., b_n)$, we have $x + y = (a_1 + b_1)$ $b_1, ..., a_n + b_n$ since $a_1 + ... + a_n = 0, b_1 + ... + b_n = 0$, we have $(a_1 + b_1) + ... + (a_n + b_n) =$ $(a_1 + ... + a_n) + (b_1 + ... + b_n) = 0$. Therefore $x + y \in W_1$ For any $x \in W_1$ and any $c \in F$, denoting that $x = (a_1, ..., a_n)$, we have $cx = (ca_1, ..., ca_n)$ and $ca_1 + ... + ca_n = c(a_1 + ... + a_n) = 0$. Therefore $cx \in W_1$ For W_2 , it is easy to check that $0 \notin W_2$ so that W_2 isn't subspace.

- (Sec 1.3 Q19) Ans: Suppose $W_2 \nsubseteq W_1$, there exists $x_2 \in W_2$, $x_2 \notin W_1$. Let $x_1 \in W_1$, $x_1 + x_2 \in W_1 \cup W_2$, if $x_1 + x_2 \in W_1$, adding $-x_1$ gives $x_2 \in W_1$, contradiction. Therefore $x_1 + x_2 \in W_2$, adding *−x*² gives *x*¹ *∈ W*2.
- (Sec 1.3 Q20) Ans: since *W* is a subspace, we have $a_1w_1, ..., a_nw_n \in W$. Thus $a_1w_1 + a_2w_2 \in W$. Then $a_1w_1 + a_2w_2 + a_3w_3 \in W$, repeating many times, we get the conclusion.
- (Sec 1.3 Q23) Ans:
	- (a) Since W_1, W_2 are subspaces, $0 \in W_1, 0 \in W_2, 0 = 0 + 0 \in W_1 + W_2$. Let $X = x_1 + x_2, y =$ $y_1 + y_2 \in W_1 + W_2$, where $x_1, y_1 \in W_1$, $x_2, y_2 \in W_2$. Then $c(x) = cx_1 + cx_2 \in W_1 + W_2$ since $cx_1 \in W_1$, $cx_2 \in W_2$, and $x+y = (x_1+y_1)+(x_2+y_2) \in W_1+W_2$ since $x_1+y_1 \in W_1$ and $x_2 + y_2 \in W_2$.
	- (b) Let *K* be a subspace of *V* that contains W_1 and W_2 , therefore for $x_1 \in W_1$, $x_2 \in W_2$, $x_1 + x_2 \in K$ since *K* is a subspace and therefore $W_1 + W_2 \subseteq K$.
- (Sec 1.3 Q24) Ans: For any $x \in W_1, y \in W_2$, it is obvious that $x + y \in F^n$. So $W_1 + W_2 \subset F^n$. For any $z \in Fⁿ$, denoting $z = (a_1, ..., a_{n-1}, a_n)$, we have $z = ((a_1, ..., a_{n-1}, 0)) + (0, ..., 0, a_n) \in$ $W_1 + W_2$. So $F^n \subset W_1 + W_2$. Thus $F^n = W_1 + W_2$. For any $x = (a_1, ..., a_{n-1}, 0) \in W_1, y =$ $(0, ..., 0, a_n)$ ∈ *W*₂, if $x = y$, we have $a_i = 0$, for any $i = 1, ..., n - 1, n$, i.e. x=y=0. Thus $W_1 \cap W_2 = \{0\}.$