1.

mmat5390: mathematical image processing

(a)

assignment 1 solutions

Note that H is a 4 x 4 matrix; hence it represents a linear transformation on 2 x 2
images.
H is not block-circulant. For example, consider the y = 2, = 2-submatrix of H, i.e.

A . . . b
(Z 2 , which is not a circulant matrix, as the shift-operator ¢ maps <Z) to (a)

d )
Hence h is not shift-invariant with hs being 2-periodic in both arguments.
Furthermore, H is not block-toeplitz, thus h is neither shift-invariant.

instead of (C> which is different from Z since b # c.

H is not a kronecker product of two 2 x 2 matrices. for example, consider the y = 1,5 =

1- and y = 2,8 = 2-submatrices of h, i.e. (Z Z) and (Z 2) neither is a scalar

multiple of the other. hence h is not separable.

Note that H is a 9 x 9 matrix; hence it represents a linear transformation on 3 x 3
images.
H is not block-circulant. For example, consider the y = 1,3 = 2-submatrix of h, i.e.

1 2 3 1

4 5 0], which is not a circulant matrix, as the shift-operator ¢t maps | 4| to
6 0 0 6

6 2

1| instead of | 5 |. Hence h is not shift-invariant with hs being 3-periodic in both
4 0

arguments. (Neither is H block-toeplitz, hence neither is h shift-invariant.)
H is the kronecker product of two 3 x 3 matrices; explicitly,

0 2 0 1 2 3
H=|1 0 3)®(4 5 O
0 4 0 6 0 0

Hence h is separable.

Note that H is a 4 x 4 matrix; hence it represents a linear transformation on 2 x 2
images.

H is block-circulant. The y = 1, 8 = 1- and the y = 2, f = 2-submatrices of H are both

(27; 2;)’ which is circulant; the y = 2,3 = 1- and the y = 1, 8 = 2-submatrices of

3T 4w
h are both ir 3

2-periodic in both arguments.

, which is also circulant. hence h is shift-invariant with hg being

H is not a kronecker product of two 2 x 2 matrices. for example, consider the y =

. . T 27 3rm Arm . .
1,8 = 1- and y = 2, 8 = 1-submatrices of H, i.e. <2ﬂ_ ﬂ_) and <47r 377). neither is

a scalar multiple of the other. Hence h is not separable.

Note that H is a 9 x 9 matrix; hence it represents a linear transformation on 3 x 3
images.
Obviously, H is block-circulant. Denote H = (4;;), then

9 9 18 18 18 36
A11 = A22 = A33 = 18 9 9 s A12 = A23 = A31 = |36 18 18
9 18 9 18 36 18



9 9 18

and A13 = As1 = A3 =18 9 9 |. All these three matrices are circulant.
9 18 9
H is the kronecker product of two 3 x 3 matrices; explicitly,
1 1 2 9 9 18
H=(2 1 1|®[18 9 9
1 2 1 9 18 9

Hence h is separable.

2. let h be the separable psf of a linear image transformation, with h(z, a, y, 8) = he(z, a)h-(y, 5).
let h be the corresponding transformation matrix.

then the y = k, 8 = l-submatrix of h (denoted by hy;) is given by

T —
y="k =[h(a+({—-Dn,xz+ (k—1)n)li<e<n
a\L B:l 1<a<n
= [h(l‘,a’ k,l)]lgxgn
1<a<n
= [he(z, @)hy (K, D] 1<a<n
1<a<n
= hr(ka l)[hC('ra a)]lgzgn
1<a<n
= h,(k,1)hL.
recall that
T T T
«+ (521) «+ (527) «+ (521)
T T T
y=1 y=2 y=n
= e (522) ) e (522) e (523)
T T T —
«+ (524) o+ (520) «+ (52%)
hi e i he(L AT hp(2, )R+ hy(n, 1)AT
hia  hao P2 he(L,2)RT he(2,2)R -+ he(n,2)R]
Bln iL2n t Bnn hT(L ”)hz hr(27 n>h’£ e hT (nﬂ ”)th
hy (L D)he by (1,2)h] hy (1,n)h
hi (2, DR hL(2,2)RE - hL(2,m)hd
= . . , . =hl @hl.

3. let f,g € My, xn(R), and assume that they are periodically extended.



let « € NN [1,m] and § € NN [1,n]. by definition,

frgla Zway (a—x,B8-y)

rx=1y=1

= f(a_7’7ﬁ_])g(7’7j) (lettingi:a—m,jzﬂ—y)

0 0 0
= > > fla—if-ieli)+ 3 Zfa—zﬂ—y)( 7)
>

i=a—m j=B—n i=a—m
a—1 0 a—1p-1

+°> 0 fla—i,B=1)gli,g)+ > > fla—i,B—j)g(i,j)
i=1 j=8—n i=1 j=1
m n m pB—1

=3 fla—i,B—=igli,d)+ > fla—i,B—j)gli,j)
i=a j=p i=a j=1
a—1 n a—1p6-1

Y fla—i, B—4)gli,4) + Y Y fla—i,B—j)g(i,j) (by periodicity)
i=1 j=p i=1 j=1

=3 gl 5) f(a—i,8—3)
i=1 j=1

=g f(o, B);

hence fxg=g=x* f.

. Since O is a shift-invariant linear image transformation on M, x,(R) with hs(-,-) being n-
periodic in both arguments, by Theorem 3.3 in Chapter 1, we have

All Aln
H= :
Anl Ann
where
hs(ovl_j) hs( 171_3) o hs(l_nvi_j)
hs(Li_j) hs(()?Z_J) hs(2_n77;_j)
Ay = . . . .
hs(n—1,i—34) hs(n—2,i—j) --- h(O,i—j)

Suppose A;; is n-periodic extended, i.e. A(iyn)(j+n) = Aij. Since hy(:,+) is n-periodic in the
second argument, we know that for any k£ € N,

hs(0,(i + k) — (5 +k&)) hs(n —1,(i+ k) — (j +k)) hs(1, (i +k)— (5 +k))
hs(1,(i+k)— (5 +k)) hs(0,(i + k) — (5 +k)) hs(2,(i+k)—(j+k))
At k) = : ; ) :
ho(n = 1,0+ k) = (G +K) ha(n=2,(+k) = (G +K) - ha(0,(+k) = (G +k))
hs(ovi_j) hs(n_lﬂz_j) hs(Li_j)
hs(lal_j) hs(077'_.7) hS(Z,Z—j)
- : : . : = Aij
ho(n—1,i— ) ho(n—2,i—34) - hy(0i—j)



All Anl e A21
A21 All e A31

Therefore, H = with A;; being circulant matrix. H is block-

circilant.
5. (a)

3—a 3—a 6—«
|A - aB|% = —a l—-a 2-a

—Q l—-a 8—« s

=202 +2(1-a)’+(2-a)?+2B-a)’+ (6 —a)’+ (8 —a)?

24
=9a® — 48a + 124 = 9(a — 5)2 + 60.

24
hence |A — aB|F is minimized at a = 9

(b)
2-a 3-a 5-a T-a\|’
lC_aD@’:\(s_z 6-a i-a 2—a>F
=22-0)!+B-a)+@d-a) +B-a)+6-a) +(7T—a)*+(8—a)
37 287

:8a2—74a+207:8(a_§)2+?_

37
hence |C — aD|F is minimized at o« = —.

(¢) The values of « that minimize the frobenius norm differences are the means of the pixel
values. The values of « that minimize the entrywise 1-norm differences are the medians
of the pixel values.

6. (a) we first compute the characteristic polynomial of AT A to obtain the singular values of

A.
10 8 6
ATA=18 8 8
6 8 10

Hence the characteristic polynomial of AT A is given by

10—\ 8 6
det(ATA-X)=] 8 8-\ 8
6 8 10—\
= 23 4+ 28)\% — 96\
= AA—4)(\—24).

The singular values of A are given to be integers. Then one solves for the eigenvector
corresponding to each eigenvalue of AT A.

For )\1 = 24,
—-14 8 6 |0 1 0 —-1]0
[ATA-\BOj=| 8 16 8 |0 |~|0 1 —1[0 |,
6 8 —1410 0 0 010
1 1 1
So | 1] is an eigenvector, which gives the unit eigenvector ; = — [ 1
1 V3 4



For Ay =4,

6 8 6|0 10 110
[ATA—XoI300]=| 8 4 8|0 |~|0 1 0|0 |,
6 8 6|0 0 0 0|0
1 1 1
So | 0 | is an eigenvector, which gives the unit eigenvector vo = — | 0
-1 V2 -1
For )\3 = 0,
10 8 6|0 1 0 —-11]0
[ATA—XsI30)=1] 8 8 8|0 |~|0 1 2|0,
6 8 10|0 0 0 0|0
1 1 1
So | —2 | is an eigenvector, which gives the unit eigenvector v3 = — | —2
1 V6 1

1
1 1 (1 2 3\ 1 1 /1
Then @) = —— A% = —— — 1) ===(;),
RV, v \/ﬂ<32 1>\/§1 \/§(1>
ﬁ1A61(123>1(1)1(—1>
TV VA 2 1)l ) vt )

1 _
Hence an svd of A is given by A = USVT, where U = \ﬁ <1 1>’ %= (\/()271 \/OZ

1 1
V2 V31
and V=—[|+2 0 -2
Vi\vz —v3 1

(b) The elementary images according to the above svd are given by:

— ST _ \/6 \/6
ULV = —= 1 1 1)=
o \/5(1>( ) (ia 7
1 /-1 -
- T
wi = () ‘”:<;f
Hence,

A = V240, 7 + V8l vt

R T 19 L
~vai($ 5 ) evs( 5y )
V6 V6 V6 ! VA

(a) As A=UXVT,
ATA = wuzvhHTwsv?) =vtvTusv? = vetsy?

and
AAT = wxvhwosvhHT =usvtvsTut =usstu”.



Note that

>y =

and

T =

Hence (0'1170'22, N

o2 0 0
o2, 0
0 0 0% g
ON—nm)yxm
o3 0 0
0 o3 0
0 0 02 1
o3 0 0
0 o2 0
0 0 0% g
O’%l O M O
0 o3, 0
0 0 - o%p
Omr—NyxnN

O (N—)

O(N—nyx(N—11)

Onx(M—N)

Ovr—Nyx (v N)

ifM<N

ifM>N

itM <N

it M >N

., 0K ) are the square roots of the largest K eigenvalues of AT A (or

AAT) in descending order, and thus the K-tuple is uniquely determined.

Suppose {0;; :i=1,2,--- , K} are distinct and nonzero. Then each eigenspace of AT A
and AAT corresponding to eigenvalue o2 has dimension 1, which means that there are
exactly two unit eigenvectors to be chosen from each eigenspace, each being the negative
of the other. Such eigenvectors are precisely the first K columns of U and V. Combined
with the fact that o;; are in descending order, the first K columns of U and V are
uniquely determined up to a change of sign.

A counterexample with nondistinct {oy; : i =1,2,--- , K} is given by:

where I and U =

I = (1 0) =LILIL=ULUT,

0 1

Lt are unitary.
V2l -1 '

A counterexample with oxx = 0 is given by:

10

00 =m0 |

woo (7



