
Lecture 9:

Speeding up Beltrami Holomorphic Flow
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Least Square Problem

Fast ! !

( Instead of computing integration)thotaaaa



ADMM t BHF to solve Diffeomorphism Optimization Problem

Background :

Minimize { E , cat
" "

t Ez C Ax ) ) where AE Mmxnllk)
- l

has full column rank
.

usually convex .

Reformulate -

- tx ) Minimize { E , ( x ) t Ez Cy ) } subject to AK - Y .

Then : the augmented Lagrangian is given by -
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CA ) can be solved by :

( Xk "

, ykt ' ) = argmin { Lex , y ,
Xk

,
Mh ) } ⑧

{ ykt '
= Xk + Ma ( Axht '

- ykt ' )

Different choices of { Mk )has been proposed to ensure
T

convergence . Penalty term



⑧ can be difficult to solve .

.

Alternating direction method with multiplier ( ADMM ) i

xht '
= argminf L ( x

, yk ,
Xk ,that }

ykt '
= argigis { L ( xht ; y ,

Ah ,
Mk ) }{
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Remark : Once { Ah) and { Mh } are carefully Chosen
,

ADMM minimizes in few iterations
.



Now
, Suppose we need to solve Diffeomorphism Optimization Problem :

f
*

= argmin { Ei Lfl t Er Luft ) } subject to :
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e . g .

Find f
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mean curvatures
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Augmented Lagrangian :

Lcf
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Ahn and pk are updated as follows :
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if 11 Vk"
- µ Lfkt '

I 112ha
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-
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Pkti = Ph C It Vh )

Ma is chosen to be b
( 8h can be constant

)

Solving subproblem ② involving v :

Very often
,

Euler - Lagrange eqt of Ezln ) is an

elliptic PDE .
e . g . Js

,

I quit IN
2

.

Then
,

E- Left of

② can be written as ,
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Solving subproblem ① involving f :

f
" I arggminfE.tt/tLXre ,

Rew - Mfl ) > them
,

In ( u - Nfl ) ) t
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Elf ) can be minimized using gradient descent algorithm .

e. S . E. I f ) = HI ,
- Idf 7115

- l

Curvatures on S , and Sz

Then : descent direction J
,

= 212 ,
- Idf ) ) Tf

Last three terms can be minimized over B. C .
to get

a descent direction 25 i

JJ =
- Are - item t p ( V - MHI )

After few iteration
,

we get a new B. C
.
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We can find theassociated QC map I = fktvz 7
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.
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Computation  of QC map using auxiliary metric

Definition : ( Beltrami Differential ) A Beltrami differential Mth d¥z

on a Riemann surface S is an assignment to each chart

( Ua
,

42 ) of an Ld complex - valued function Ma defined

on local parameters Za such that  :

Mdlzaiddz
=Mpctp )

on the domain which is also covered by another chart

( Up , Zp )
,

where dzp

,
,

DIZ
= Fza%p and %p=¢po¢i !
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Definition : ( QC map between Riemann surfaces ) An orientation -

preserving homeomorphism f : S ,
→ Sz is called quasi - conformal

associated with MddIz if for any chart ( U2
,

%) on S
,

and for any chart ( Up , Xp ) on Sz
,

the mapping

tap : = Xp of  o old
"

is QC associated with Ma ( Za ) .
Also

,

on the domain on S , which is also covered by ( ya ,

,
Pa , )

,

ftp.e-ypofoo/ai
'

is QC associated with My , C za , )

where Matza ' ) -

- Matza ) ( data
, )/( DIET, )

.



Well - defined ?

• On region covered by two different charts Za and Za
'

,

we have daffy, Italy, 4ao = 0
.

holomorphic (
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° Let Xp and Xp , be two different charts on the range of

£
, Mp and Mpi

be the Beltrami coefficient computed

under fap and fap , resp .

Then ?
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. fool I

'
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'
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xpBy composition formula :

µ go f =
Mf  + L Mg of )T

.
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,
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Theorem : ( Auxiliary metric associated with a Beltrami Differential)

Suppose ( Si
, g , ) and ( Sz

, ga ) are two metric surfaces
,

f- Si → Sz

Beltrami differential µdI
is a QC map

associated with the dz .

Let Z and W be the local isothermal coordinates of S ,

and Sz respectively ,
indeed g ,

=EX
' l ⇒

dz DI and

92 =
ethlhtdwdw

.

Define an auxiliary Riemannian

metric on Si
,

§,
= e

" '
' "

I dzt µ DEI ?

Then : the mapping f :( S , ,
I , ) → ( Sz

, ga ) is a

conformal mapping .


