Another method to solve Beltrami's equation
\nlinear Beltrami Solve (LBS)
\nLet
$$
M = (V, E, F)
$$
 be simply-connected domain w1 boundary.
\nLet $V = \{(g_1, h_1), (g_2, h_2), ..., (g_{|V|}, h_{|V|})\}$.
\nIn discrete formulation, given $M = P + iC$, we want to
\nCompute a resulting mesh M' such that
\n $V_n = (g_n, h_n) \mapsto W_n = (s_n, t_n) \in W'$
\nOn each fact T, the discrete QC map f is linear.
\n $\int_{V} \int_{T} (x, y) = \begin{pmatrix} M_{T}(x, y) \\ v_{T}(x, y) \end{pmatrix} = \begin{pmatrix} A_{T}x + b_{T}y + P_{T} \\ G_{T}x + d_{T}y + S_{T} \end{pmatrix}$
\n $\therefore Mx|_{T} = A_{T} \times M_{Y}|_{T} = b_{T} \times U_{X}|_{T} = C_{T} \times U_{Y}|_{T} = d_{T}$

Consider the directional derivatives along
\n
$$
V_{j}
$$
- V_{i} and V_{k} - V_{i} , we get:
\n
$$
\begin{pmatrix} a_{\tau} & b_{\tau} \\ C_{\tau} & d_{\tau} \end{pmatrix} \begin{pmatrix} g_{j} - g_{i} & g_{k} - g_{i} \\ g_{j} - h_{i} & h_{k} - h_{i} \end{pmatrix} = \begin{pmatrix} S_{j} - S_{i} & S_{k} - S_{i} \\ t_{j} - h_{i} & d_{k} - t_{i} \end{pmatrix} v_{i}
$$
\nAssume f is orientation - preserving, then:
\n
$$
\begin{pmatrix} a_{d} & g_{j} - g_{i} & g_{k} - g_{i} \\ h_{j} - h_{i} & h_{k} - h_{i} \end{pmatrix} = 2 \text{ Area}(T).
$$
\n
$$
\begin{pmatrix} a_{\tau} & b_{\tau} \\ C_{\tau} & d_{\tau} \end{pmatrix} = \frac{1}{2 \text{ Area}(T)} \begin{pmatrix} S_{j} - S_{i} & S_{k} - S_{i} \\ d_{k} - k_{i} & d_{k} - k_{i} \end{pmatrix} \begin{pmatrix} h_{k} - h_{i} & g_{i} - g_{k} \\ h_{i} - h_{j} & g_{j} - g_{j} \end{pmatrix}
$$
\n
$$
\begin{pmatrix} a_{\tau} & b_{\tau} \\ C_{\tau} & d_{\tau} \end{pmatrix} = \begin{pmatrix} A_{i}^{i} & S_{i} + A_{i}^{k} & S_{j} + A_{i}^{k} & S_{k} \\ A_{i}^{i} & k_{i} + A_{i}^{i} & k_{j} + A_{i}^{k} & R_{i} + B_{i}^{k} & S_{j} + B_{i}^{k} & S_{k} \\ A_{i}^{i} & k_{i} + A_{i}^{i} & k_{j} + A_{i}^{k} & R_{i} + B_{i}^{k} & S_{j} + B_{i}^{k} & S_{k} \end{pmatrix}
$$

BALLEY

$$
\begin{bmatrix}\na_{r} & b_{r} \\
c_{r} & d_{r}\n\end{bmatrix} = \frac{1}{2 \cdot Area(T)} \begin{bmatrix}\ns_{r} - s_{i} & s_{k} - s_{i} \\
s_{j} - t_{i} & t_{k} - t_{i}\n\end{bmatrix} \begin{bmatrix}\nh_{k} - h_{i} & g_{i} - g_{k} \\
h_{j} - t_{i} & t_{k} - t_{i}\n\end{bmatrix}
$$
\nwhere\n
$$
= \begin{bmatrix}\nA_{r}^{k} s_{i} + A_{r}^{k} s_{j} + A_{r}^{k} s_{k} & B_{r}^{k} s_{i} + B_{r}^{k} s_{k} \\
A_{r}^{k} t_{i} + A_{r}^{k} t_{j} + A_{r}^{k} t_{k} & B_{r}^{k} t_{i} + B_{r}^{k} t_{k}\n\end{bmatrix}.
$$
\nwhere\n
$$
A_{r}^{k} = (h_{r} - h_{k})/2 \cdot Area(T); \quad A_{r}^{k} = (h_{k} - h_{i})/2 \cdot Area(T); \quad A_{r}^{k} = (h_{i} - h_{j})/2 \cdot Area(T);
$$
\n
$$
B_{r}^{k} = (g_{i} - g_{i})/2 \cdot Area(T); \quad B_{r}^{k} = (g_{i} - g_{k})/2 \cdot Area(T).
$$
\nNow, define\n
$$
\begin{bmatrix}\n\mathbf{a} \cdot \mathbf{b} \\
\mathbf{b} \cdot \mathbf{c} \\
\mathbf{b} \cdot \mathbf{c} \\
\mathbf{d} \cdot \mathbf{c}\n\end{bmatrix} \begin{bmatrix}\n\mathbf{v} \\
\mathbf{v} \\
\mathbf{v} \\
\mathbf{c}\n\end{bmatrix} = \sum_{i=1}^{n} A_{r} \mathbf{e}_{i} \begin{bmatrix}\n\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{b} \\
\mathbf{c}\n\end{bmatrix}.
$$
\nNow, define\n
$$
\begin{bmatrix}\n\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{c}
$$

BALLEY ENTITY

Recall that:
\n
$$
\begin{pmatrix}\n-v_y \\
 v_x\n\end{pmatrix} = \frac{1}{1 - e^2 - t^2} \begin{pmatrix}\n1 - e^2 & -t \\
-t & e^2\n\end{pmatrix} \begin{pmatrix}\n\rho - t & -t \\
t & -e^2\n\end{pmatrix} \begin{pmatrix}\nu_x \\
u_y\n\end{pmatrix}
$$
\n
$$
\Rightarrow \begin{pmatrix}\n-v_y \\
v_x\n\end{pmatrix} = A \begin{pmatrix}\nu_x \\
u_y\n\end{pmatrix}
$$
\n
$$
\therefore \text{Div} (A \begin{pmatrix}\nu_x \\
u_y\n\end{pmatrix}) = 0 \text{ for } s \text{ true for } u \text{ with}
$$
\n
$$
\text{Switched by } \{a \begin{pmatrix}\nu_x \\
u_y\n\end{pmatrix} = 0 \text{ for } a \text{ true with}
$$
\n
$$
\begin{pmatrix}\n1 + M = [0,1] \times [0,1], \quad \text{We are true on the left boundary and } u = 0 \text{ on the right boundary and } u = 1 \text{ on the right boundary, and } u = 1 \text{ on the right boundary, and } u = 1 \text{ on the right boundary.}
$$

DRAW COLL

n is determined, we can determine Once $h = \sum_{T} (\alpha_T (u_x)_T^2 + 2 \beta_T (u_x)_T (u_y)_T + \gamma_T (u_y)_T^2)$ V can be determined by solving: $Div(A(\nu_{y})) = 0$ on the bottom boundary $V = 0$ With boundary conditions: on the upper boundary. $v = A$

Remark:	In case, l and m and m are in p used, we can \n																																																														
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Fixing con formality distortion for Fast Spherical Conformal Parameterization Recall : Given genus - O mesh M - CV , ^E , F) , we can take , Wo , vi. Va] away one small triangle ALtreat it as north pole) and map T =L Po , Pipa] it to big triangle (w/ same angle structure as ^A) by solving : ^I wijffcvj) fruit) ⁼ ^o subject to the [vi. Vj) EE constraint that fcvoj-p.EC , fav ,) =p , EE and flute REG. (^f is ^a piecewise linear map from ^M to ^G) pz (Linear system ⁼ fast) [→] # Pi a- Po

Detailed computation: Blg disturtion B1G South pole stereographic
proj \longrightarrow area $\overline{\phi}$ $\overline{\omega}$ $\overline{\beta}$. \overline{C} . = μ $W \mid B.C = M$ \widetilde{g} S olve : $\tilde{\tilde{u}}$ + $\tilde{\tilde{v}}$ $Div(A(\widetilde{\omega}_{x}))=0$ and $Div(A(\widetilde{\omega}_{y}))=0$ Subject to $\widetilde{g}(p_d) = g_{\widetilde{J}}$ for $J=1,2$, Then: $\phi \circ \tilde{g} \circ \tau_s$ has less conformality Is V Sunth pole inverse. St conformality distortion $fixed$