Fast algorithm for genus 0 spherical conformal parameterizations

\n9.200: Let S be a Riemann surface. 7 conformal parameterizations

\n9.4: S
$$
\rightarrow
$$
 B².

\nLet P \in S. We can assume $\phi(\rho) = \text{north pole}$.

\nLet T be the stereographic projection.

\nLet A be a small "curved" triangle around P \rightarrow $T_{\phi}^{\phi}(\Delta) = \tilde{\Delta} = \text{big triangle in C.$

\nThe angles at the 3 vertices of A is approximately preserved under $\tilde{\phi}$.

\nBy $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

\nThus, $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

\nThus, $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

\nThus, $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

\nThus, $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

\nThus, $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

\nThus, $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

\nThus, $\hat{\phi} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Method:	In the discrete case, let	$M = (V, E, F)$. Take
$T = [U_0, U_1, V_2] \in F$ and let $p \in T$ be the centroid of T.		
$(We$ can find a harmonic map with boundary condition		
$Hvat$	$\widetilde{\phi}(V_0) = W_0$, $\widetilde{\phi}(V_1) = W_1$ and $\widetilde{\phi}(V_2) = W_2 \ni W_1$	
$[W_0, U_1, W_2]$ has the same angle structure as $[U_0, U_1, U_2]$.		
$Matterahically$, we need to solve:		
$\sum_{V_i, V_j} [f(v_j) - f(v_i)] = 0$ for $\forall i=1,2,..,N$		
$[U_i, U_j] \in E$		
and $f_i \times f(v_0) = W_0$, $f(v_i) = W_1$ and $f(v_2) = W_2$.		
$(\text{Linear System}, \text{much faster than iterative scheme})$		

BALLEY BANK

Remark: Numerical every (conformality distortion) near the
\nno-th pole is big.

\nWe'll use quasiconformal theories to fix it.

\n9. Let
$$
\psi: S \rightarrow S^2
$$
 with big distortion at north pole.

\nReparammetry ψ by guasi-conformal may $3 \rightarrow 3$

\n9.4 can fix the conformality distribution of the system.

Brain landmark matching optimized harmonic parameterizations

\nGood: Given a brain cortical surface S. Let
$$
ipif_{\pi}
$$
, be, and $p \circ \lambda$ is defined on S. λ and $+b$, find: $f: S \rightarrow S^2$

\nSuch that S is no conformal / harmonic as possible, and $f(p_i) = g_i$ ($i = 1, 2, ..., m$) for some fixed locations $g_i \in S^2$.

\nSuppose S_i and S_z be two brain surfaces W landmarks $\{p_i^*\}_{i=1}^m$ and $\{p_i^*\}_{i=1}^m$ respectively. Let $f: S_i \rightarrow S^2$ and $f': S_{\pi} \rightarrow S^2$

\n $\exists f(p_i) = g_i = f'(p_i')$ for $i = 1, 2, ..., m$.

\nThen, $(f')^{\pi}f: S_i \rightarrow S_{\pi}$ is a landmark-matching surface $f: S_{\pi} \rightarrow S^2$

\n $g: f(p_i) = g_i = f'(p_i')$ for $i = 1, 2, ..., m$.

\nThen, $(f')^{\pi}f: S_i \rightarrow S_{\pi}$ is a landmark-matching surface $f: S_i \rightarrow S^2$ and $f: S^2 \rightarrow S^2$

BALLEY BANK

Method 1 Find
$$
f \ni \sum_{[v_i, v_j]}\sum_{i} (f(v_j) - f(v_i))
$$
 $\forall i=1,2,...,n$
\n
$$
\begin{array}{ll}\n& \text{and } f(p_i) = g_i & i=1,2,...,m \\
& (if p_i's \text{ are vertices}) \\
\text{Drawbalds: } Bij \text{ continuity is difficult to control.} \\
\text{Method 2: Find } f \text{ that minimizes:} \\
\text{Equation 3: } f \text{ into } f \text{ minimizes:} \\
\sum_{[vi, v_j]}\sum_{i \in E} \omega_{ij} [f(v_i) - f(v_j)] + \lambda \sum_{k=1}^{m} [f(p_k) - 8k] \\
& \lambda = \text{adjusing parameter } (Big \text{ if we want more accurate)} \\
& \text{fundamental matrix:} \\
\text{Equation 4: } f \text{ is equivalent to } B\text{ into the interval.}\n\end{array}
$$

Using same idea, we use descent method to minimize Elaadmark
\n
$$
\frac{df}{dt} = -\mathcal{F}f
$$
\nwhere
\n
$$
(\mathcal{F}f) = \sum_{[U_i, U_j'] \in \mathcal{L}} [U_i; (f(U_j) - f(U_i)) + \lambda \sum_{k=1}^{m} (f(\rho_k) - \delta k)
$$
\n
$$
Normalize \ (\mathcal{F}f) + \lambda \sum_{k=1}^{m} (f(\rho_k) - \delta k)
$$
\n
$$
\mathcal{F}f = (\mathcal{F}f) - \langle \mathcal{F}f, \overrightarrow{n} \rangle \overrightarrow{n}
$$
\n(teratively, adjust $\overrightarrow{f} + \sum_{k=1}^{m} \lambda_k$

Remark : Both methods do not have bijeetivity guarantee . Use quasi conformal theories to fix it .

Question for mod map between Riemann surfaces

\nBasic idea: Given two Riemann surfaces S, and S2.

\nUnder the conformal coordinate charts,
$$
S: S_1 \rightarrow S_2
$$
 is "gaasi-conformed" iff S is "guoni-conformd" as a map from C \rightarrow C under the Conformal charts (follows from the definition. Later)

\nSupposs S, and S2 are simply-connected open singular.

\nHowever, S₁ and S₂ are simply-connected open singular.

\nThen: $\oint: S_1 \rightarrow S_2$ is quasiconformal iff

\n $\oint_2^{-1} \cdot f \cdot \phi_1 : 10 \rightarrow 0$ is quasi-conformal in 2D.

\nThese our attention on C \rightarrow C $\hat{m} \hat{m} \hat{m} \hat{m}$.

Quasi-conformal map from C to C
\nDefinition: (Quasiconformal map) let
$$
f: C \rightarrow C
$$
 be a C'
\nhomeomorphism. f is called a quasi-conformed map with
\nrespect to a complex-valued function $M: C \rightarrow C$, called
\nthe Beffium coefficient, with $||M||_{\infty} < 1$ (f:
\n $(\star) \frac{3f}{\sqrt{2}} (\frac{3}{2} - \mu \tau) \frac{\partial f}{\partial \tau}$ where
\n $\frac{\partial}{\partial \overline{2}} = \frac{1}{a} (\frac{3}{2} + i \frac{3}{2} - \mu \tau) \text{ and } \frac{\partial}{\partial \overline{2}} = \frac{1}{a} (\frac{3}{2} - i \frac{3}{2} - \mu \tau)$
\n $(\star) \text{ is called the Beffanni's equation}$
\n $(\star) \text{ is called the Beffanni's equation}$

Remark: 1. When
$$
M \equiv 0
$$
, the Beltrami's equation is reduced
\nto the Cauchy-Riemann equation. Let $f = u+iv$ ($\frac{u}{real}$)
\nThen: $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} (\frac{\partial}{\partial x} (u+iv) - i \frac{\partial}{\partial y} (u+iv))$
\n $= \frac{1}{2} ((u \times + v \times y) + i (v \times - u \times y)) = 0$
\n $\Rightarrow \int u_x = -v \int u_y = +vx$ (Cauchy - Riemann egt)
\n2. In matrix form, a conformal/holomorphic complex-value
\nfunction $f = u+iv$ satisfies:
\n $\text{Df}(z) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} u_x & -v_x \\ v_x & u_x \end{pmatrix}$

ORLE COM

Thus, if
$$
||u(t)||_{\sigma} \le 1
$$
 and $\left|\frac{2f}{\sigma^2}\right| \ne 0$ (f = homeomorphism)
\nthen $\overline{J}(z) > 0$ everywhere. \overline{f} is orientation-preserving.
\nExistenu and Uniqueness Theorem
\nTheorem: (Measurable Riemann mapping theorem) Suppose $\mu \in C \rightarrow C$
\nis Lebesgue measurable and scatisfies $||u||_{\infty} \le 1$, then there exist
\na *quasi*-conformal homeomorphism ϕ from C onto itself,
\nwhich is in the Sobolev space $W^{1,2}(C)$ and satisfies
\nthe Beltrani equation $\left(\frac{3f}{\sigma \overline{t}}\right) = \mu(\overline{t}) \frac{2f}{\sigma \overline{t}}$ in the distribution
\nneanse. Also, by fixing 0, 1, ∞ , the associated Gaussianforward
\nhomemorphism ϕ is uniquely determined.

Existenu and Uniqueness Theorem
\nTheorem: (Measurable Riemann mapping theorem) Suppose
$$
M = C \rightarrow C
$$

\nis Lebesgue measurable and scatisfies $||M||_{\infty} < 1$, then there exists
\na Gaussian-conformal homeomorphism ϕ from C onto itself,
\nwhich is in the Sobolev space W^{1,+2}(C) and satisfies
\nthe Bethami equation $\left(\frac{\partial f}{\partial \overline{z}} = \mu(z)\frac{\partial f}{\partial z}\right)$ in the distribution
\nneune. Also, by fixing 0, 1, ∞ , the associated Gaussian
\nhomemorphism ϕ is uniquely determined.

Theorem : Suppose ^µ : ID [→] ^E is Lebesgue measurable and $\frac{1}{\sinh\theta}$ $\sinh\theta$. Then, there exists a quasiconformal homeomorphism of from ID to itself , thich is m the Sobolev space $w^{1,2}(\Omega)$ and satisfies the Beltrami equation in the distribution sense. Also, by fixing o and 1 , ϕ is uniquely determined . Proof: Follows from previous thm by reflection

(Based on Beltrami holomorphic flow Later !)

Comparison of quasiconformal maps

\nLet
$$
f: C \to C
$$
 and $g: C \to C$ be quasiconformal maps.

\nThen, the Belbami coefficient of the composition map $g \cdot f$ is given by:

\n
$$
M_{g \circ f}(z) = \frac{M_{f}(z) + \overline{f_{z}(z)} f_{z}(z) (M_{g} \circ f)}{1 + \overline{f_{z}(z)} f_{z}(z) \overline{M_{f}(M_{g} \circ f)}}
$$
\nTherefore:

\n
$$
Let f: \Omega \to \Omega_{z} \text{ and } g: \Omega_{z} \to \Omega_{3} \text{ be quasiconformal maps. Suppose the Belbrami coefficients of f^{-1} and g are the same. Then the Belbrami coefficient of $g \circ f$ is equal to 0 and $g \circ f$ is conformal.\nProof:

\n
$$
N_{g \circ f} \text{ is conformal.}
$$
\nProof:

\n
$$
N_{g \circ f} \text{ is conformal.}
$$
\n
$$
M_{g^{-1}} \circ f = -\left(\overline{f}^{*}\right) f_{\{z\}} \right)^{*} M_{f}
$$
\n
$$
M_{g^{-1}} = M_{g} \text{, we have:}
$$
$$

BALLEY BOOT

 $M_f + \binom{f_{\mathbf{z}}}{f_{\mathbf{z}}} (M_g \circ f) = M_f + \binom{f_{\mathbf{z}}}{f_{\mathbf{z}}} (M_f \circ f)$ M_{+} ($\frac{5}{12}$) (- $\frac{1}{12}$) M_{+} = 0 By the composition formula, $M_{g,f} = o$ and so got is conformer. Remark: The above theorem gives a weful way to tis conformality distortion. $\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{3}}\right)$ (B) $\frac{1}{3}\left(\frac{1}{3}\right)$. got is conformed J g, m $\left\langle \right\rangle$ or We fog' is conformed

In depth analysis of Bellram's equation
\nLet f = u+iv and M = P+ i L. Comparing the real and
\nimaginary parts of
$$
\frac{9f}{2^2} = \mu \frac{af}{2^2}
$$
 gives:
\n
$$
\begin{pmatrix} P^{-1} & L \\ L & -(p+1) \end{pmatrix} \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} P^{+1} & L \\ L & I-p \end{pmatrix} \begin{pmatrix} -v_y \\ v_x \end{pmatrix}
$$
\n
$$
\begin{pmatrix} \frac{1}{L} & \frac{1}{L} \\ \frac{1}{L} & -\frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 & L \\ L & I-p \end{pmatrix} = \begin{pmatrix} 1 & L \\ L & I-p \end{pmatrix} \begin{pmatrix} -v_y \\ v_x \end{pmatrix}
$$
\n
$$
\begin{pmatrix} -v_y \\ v_x \end{pmatrix} = \frac{1}{1 - e^{2} - L^2} \begin{pmatrix} 1 - e^{-2} & L^2 > 0 \\ -L & \frac{1}{L} & L \end{pmatrix} \begin{pmatrix} 1 & L \\ L & -\frac{1}{L} \end{pmatrix} \begin{pmatrix} u_x \\ u_y \end{pmatrix}
$$
\nDenote $C = \begin{pmatrix} 0^{-1} & L \\ L & -\frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\ -L & \frac{1}{L} \end{pmatrix} \begin{pmatrix} 1 - e^{-2} & \frac{1}{L} \\$

Area distortion under Gaussian, let
$$
f: [0,1] \times [0,1] \rightarrow \Omega \subseteq \mathbb{C}
$$
.
\n
$$
\begin{array}{ccc}\n\text{Then } \text{Simplify our discussion,} & \text{Let } f: [0,1] \times [0,1] \rightarrow \Omega \subseteq \mathbb{C}.\n\end{array}
$$
\n
$$
\begin{array}{ccc}\n\text{Now, area of } \Omega = \int_{R} J(\mathbf{z}) d\mathbf{z} \\
\text{Recall that } & \begin{pmatrix} +v_{y} \\ -v_{x} \end{pmatrix} = \begin{pmatrix} d & \beta \\ \beta & \gamma \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} = \begin{pmatrix} d & u_{x} + \beta & u_{y} \\ \beta & u_{x} + \gamma & u_{y} \end{pmatrix} \\
\therefore \text{Area of } \Omega = \int_{R} u_{x} (d u_{x} + \beta u_{y}) + (\beta u_{x} + \gamma u_{y}) u_{y} \\
= \int_{R} d u_{x} + 2 \beta u_{x} u_{y} + \gamma u_{y} u_{y} \\
\text{where } & \alpha, \beta \text{ and } & \gamma \text{ are determined by } u = \beta + i \mathbb{C}.\n\end{array}
$$

Remark:
$$
\mu
$$
 (or λ, β, γ) introduces area distribution
under $\frac{1}{3}$
• Computationally, once μ associated to μ is obtained
we can determine the area of the target domain by
 $A = \int_{R} dU_{x}^{2} + 2\beta U_{x}U_{y} + 8U_{y}^{2}$

 $\Delta f = \int_{R} dU_{x}^{2} + 2\beta U_{x}U_{y} + 8U_{y}^{2}$

Let $\Omega = [0, 1] \times [0, \eta]$, then $\theta = A$:

 \therefore On ω μ is computed, the geometry of the target
domain can be determined.

 \therefore ν can be computed (Useful observation!)