Fast algorithm for genus- 0 spherical conformal parameterizations

$$\frac{9}{\text{dea:}}$$
 Let S be a Riemann surface. \exists conformal parameterization
 $\exists \phi: S \Rightarrow S^2$.
Let $p \in S$. We can assume $\phi(p) = \text{north pole.}$
Let τ be the sterographic projection.
Let Δ be a small "curved" triangle around $p = \exists$
 $\tau \cdot \phi(\Delta) = \tilde{\Delta} = \text{big triangle in } \mathbb{C}$.
The angles at the 3 vertices of Δ is
approximately preserved under $\tilde{\phi}$.

ON LA

Method: In the discrete case, let
$$M=(V, E, F)$$
. Take
 $T = [V_0, V_1, V_2] \in F$ and let $p \in T$ be the centroid of T .
We can find a hormonic map with boundary condition
that $\widetilde{\Psi}(v_0) = w_0$, $\widetilde{\Psi}(v_1) = w_1$ and $\widetilde{\Psi}(v_2) = w_2 \ni$
 $[w_0, v_1, w_2]$ has the same angle structure as $[v_0, v_1, v_2]$.
Mathematically, we need to solve:
 $\sum w_{ij} (f(v_j) - f(v_i)) = 0$ for $\forall i=1,2,...,N$
 $[v_{i,v_j}] \in E$
and fix $f(v_0) = w_0$, $f(v_1) = w_1$ and $f(v_2) = w_2$.
(Linear system, much faster than iterative scheme)

Brain landmark matching optimized harmonic parameterization
Goal: Given a brain cortical surface S. Let
$$ip_i j_{i=1}^N$$
 be
landmark points defined on S. Want to find: $f: S \rightarrow S^2$
Such that f is as conformal/harmonic as possible and
 $f(p_i) = g_i \ (i=1,2,...,m)$ for some fixed locations $g_i \in S^2$.
Suppose S₁ and S₂ be two brain surfaces w/ landmarks
 $ip_i j_{i=1}^m$ and $ip_i' j_{i=1}^m$ respectively. Let $f: S_1 \rightarrow S^2$ and $f: S_2 \rightarrow S^2$
 $f(p_i) = g_i = f'(p_i')$ for $i=1,2,...,m$.
Then, $(f')^{-1} f = S_1 \rightarrow S_2$ is a landmark-matching surface
 $registration of S_1$ and S_2 (Atlas-based surface registration)

MALL

Method 1 Find
$$f \ni \sum W_{ij}(f(v_j) - f(v_i)) \forall i=1,2,...,n$$

$$[v_{i,v_j}]_{i \in E}$$
and $f(p_i) = g_i \quad i=1,2,...,m$

$$(if p_i's are vertices)$$
Drawbacke: Bijectivity is difficult to control.
Method 2: Find f that minimizes:

$$E_{landmak}f) = \frac{1}{2} \sum_{(v_i,v_j)\in E} W_{ij} [f(v_i) - f(v_j)]^2 + \lambda \sum_{k=1}^{m} [f(p_k) - g_k]^2$$

$$\lambda = adjusting parameter (Big if we want more accurate landmake matching)$$
Soft constraint (an better control bijectivity.

Using same idea, we use descent method to minimize Elandmark
$$\frac{df}{dt} = -\mathfrak{D}f, \text{ where}$$
$$(\mathfrak{D}f)_{i} = \sum_{(v_{i},v_{j})\in} (f(v_{j}) - f(v_{i})) + 2\lambda \sum_{k=1}^{M} (f(p_{k}) - 3k)$$
Normalize $(\mathfrak{D}f)$ to its tangential component to get $\mathfrak{D}f = (\mathfrak{D}f) - \langle \mathfrak{D}f, n > n$ (teratively adjust f to minimize E landmark.

Quasiconformal map between Riemann surfaces
Basic idea: Given two Riemann surfaces
$$S_1$$
 and S_2 .
Under the conformal coordinate charts, $f = S_1 \rightarrow S_2$ is
"guasi-conformal" iff f is "guasi-conformal" as a
map from $C \rightarrow C$ under the conformal charts (follows
from the definition. Later)
Suppose S_1 and S_2 are simply-connected open surfaces.
 $G_{11} \oplus C$
 \exists conformal $\phi_1 = 1D \rightarrow S_1$ and $\phi_2 = 1D \rightarrow S_2$ (Conformal
parameterization
Then: $f: S_1 \rightarrow S_2$ is guasi-conformal iff
 $\phi_2^{-1} \circ f \circ \phi_1 = 1D \rightarrow ID$ is guasi-conformal in 2D.
in Focus our attention on $C \rightarrow C$ first!

Quasi-conformal map from C to C
Definition: (Quasiconformed map) Let
$$f: C \rightarrow C$$
 be a C'
homeomorphism. f is called a guasi-conformal map with
respect to a complex-valued function $\mathcal{M}: C \rightarrow C$, called
the Beltrami coefficient, with $\|\mathcal{M}\|_{\infty} < 1$ $\forall f:$
 $(\star) \frac{\partial f}{\partial z}(z) = \mathcal{M}(z) \frac{\partial f}{\partial z}$ where
 $\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$ and $\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})$
 $\mathcal{M}(z)$ measures the local geometric distortion at z .
 (\star) is called the Beltrami's equation

Remark: 1. When
$$\mu \equiv 0$$
, the Beltrami's equation is reduced
to the Cauchy-Riemann equation. Let $f = u + iv$ (u, v
then: $\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} (u + iv) - i \frac{\partial}{\partial y} (u + iv) \right)$
 $= \frac{1}{2} \left((u + vy) + i (vx - uy) \right) = 0$
 $\Rightarrow \int ux = -vy \quad (Cauchy - Riemann eqt)$
2. In matrix form, a conformal/holomorphic complex-value
function $f = u + iv$ satisfies:
 $Df(z) = \begin{pmatrix} ux & uy \\ vx & vy \end{pmatrix} = \begin{pmatrix} ux - vx \\ vx & ux \end{pmatrix}$

$$\begin{array}{l} 0r \quad \begin{pmatrix} -v_{y} \\ v_{x} \end{pmatrix} \stackrel{\text{Td}}{=} \begin{pmatrix} +1 & 0 \\ 0 & +1 \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} \quad - \qquad (\# \#) \\ 0 \quad +1 \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} \quad - \qquad (\# \#) \\ 0 \quad \text{(} \# \#) \\ (\# \#) \quad = \begin{pmatrix} \pi & \beta \\ 2 & \theta \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} \quad \text{for some } d, \beta \text{ and } Y \\ depending \quad \text{on } \mathcal{M} \\ \text{depending } \text{on } \mathcal{M} \\ \text{Represent the metric distortion} \\ 3. \quad \text{Let } J(z) = Jacobian \quad \text{of } f = u + iv \quad \text{at } z. \\ \text{Then } J = \det \begin{pmatrix} u_{x} & u_{y} \\ v_{x} & v_{y} \end{pmatrix} = (x \quad v_{y} - u_{y} v_{x} \\ \frac{\partial f}{\partial z} \Big|^{2} - \Big| \frac{\partial f}{\partial \overline{z}} \Big|^{2} = (ux + v_{y})^{2} + (vx - u_{y})^{2} - (\underline{ux - v_{y}})^{2} + (vx + u_{y})^{2} \\ (u_{x} v_{y} - u_{y} v_{x}) = J(z) \\ \vdots \quad J(z) = \Big| \frac{\partial f}{\partial z} \Big|^{2} \begin{pmatrix} 1 - |\frac{\partial f}{\partial \overline{z}}|^{2} \end{pmatrix} = \Big| \frac{\partial f}{\partial z} \Big|^{2} \begin{pmatrix} 1 - (\mathcal{M}(z))^{2} \end{pmatrix} \end{array}$$

Thus, if
$$\|\mathcal{M}(t)\|_{0} \leq 1$$
 and $|\frac{2f}{2t}|_{t} = 0$ ($f = homeomorphism$)
then $J(z) > 0$ everywhere. f is orientation-preserving
everywhere
Existence and Uniqueness Theorem
Existence and Uniqueness Theorem
Theorem: (Measurable Riemann mapping theorem) Suppose $\mathcal{M} = \mathbb{C} \to \mathbb{C}$
is Lebesgue measurable and satisfies $\|\mathcal{M}\|_{t} \leq 1$, then there exists
a guasi-conformal homeomorphism \emptyset from \mathbb{C} onto itself,
which is in the Sobolev space $\mathcal{M}^{1/2}(\mathbb{C})$ and satisfies
the Beltrami equation $(\frac{2f}{2t} = \mathcal{M}(t)\frac{2f}{2t})$ in the distribution
sense. Also, by fixing 0, 1, ∞ , the associated guasiconformal
homeomorphism ψ is uniquely determined.

Existence and Uniqueness Theorem
Theorem: (Measurable Riemann mapping theorem) Suppose
$$M: C \rightarrow C$$

is Lebesgue measurable and satisfies IIMILo<1, then there exists
a quasi-conformal homeomorphism ϕ from C onto itself,
which is in the Sobolev space $W^{1/2}(C)$ and satisfies
the Beltrami equation $\left(\frac{\partial f}{\partial z} = \mu(z) \frac{\partial f}{\partial z}\right)$ in the distribution
sense. Also, by fixing 0, 1, ∞ , the associated quasiconformal
homeomorphism ϕ is uniquely determined.

Theorem: Suppose M: ID > C is Lebesgue measurable and Satisfies || Mllo < 1. Then, there exists a quasiconformal homeomorphism of from ID to itself, which is in the Sobolev space W^{1,2}(I) and satisfies the Beltrami equation in the distribution sense. Also, by fixing 0 and 1, \$ is uniquely determined. Proot: Follows from previous thm by reflection. (Based on Beltrami holomorphic flow Later!)

Composition of quasiconformal maps
Let
$$f: \mathbb{C} \to \mathbb{C}$$
 and $g: \mathbb{C} \to \mathbb{C}$ be quasiconformal maps.
Then, the Beltrami coefficient of the composition map $g \circ f$
is given by: $Mg \circ f(z) = \frac{Mf(z) + \overline{f_z(z)}/f_{z(z)}(Mg \circ f)}{1 + \overline{f_z(z)}/f_{z(z)}M_f(Mg \circ f)}$
Theorem: Let $f: \Omega_1 \to \Omega_2$ and $g: \Omega_2 \to \Omega_3$ be quasiconformal
maps. Suppose the Beltrami coefficients of f^{-1} and g are the
same. Then the Beltrami coefficient of $g \circ f$ is equal to 0
and $g \circ f$ is conformal.
Proof: Note that: $M_{g^{-1}} \circ f = -(\frac{f_z}{f_{z(z)}}^2 M_f.$
'.' $M_{f^{-1}} = Mg$, we have:

INALLY COLOR

 $\mathcal{M}_{f} + \left(\frac{f_{z}}{f_{z}} \right) \left(\mathcal{M}_{g} \circ f \right) = \mathcal{M}_{f} + \left(\frac{f_{z}}{f_{z}} \right) \left(\mathcal{M}_{f^{-1}} \circ f \right)$ $= M_{f} + \left(\frac{\overline{f}_{z}}{f_{z}} \right) \left(- \frac{\overline{f}_{z}}{\overline{f}_{z}} \right) M_{f} = 0$ By the composition formula, Mg.f = 0 and so got is conformal. <u>Remark</u>: The above theorem gives a useful way to fix Conformality distortion. ID f, M (s) 1D fogil is conformal gof is g, m S sr)

$$\frac{\operatorname{In depth analysis of Beltrami's equation}{\operatorname{Let } f = u + iv \text{ and } M = p + i \tau. Comparing the real and imaginary parts of $\frac{\Im f}{\Im z} = M \frac{\Im f}{\Im z}$ gives:

$$\begin{pmatrix} p - i & \tau \\ \tau & -(p+i) \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix} = \begin{pmatrix} p + i & \tau \\ \tau & i - p \end{pmatrix} \begin{pmatrix} -v_{y} \\ v_{x} \end{pmatrix}.$$

$$(I|M||_{o} < i, det \begin{pmatrix} p + i & \tau \\ \tau & i - p \end{pmatrix} = i - p^{2} - \tau^{2} > o \quad for \quad \forall z \in \Omega.$$

$$\begin{pmatrix} -v_{y} \\ v_{x} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ -\tau & p + i \end{pmatrix} \begin{pmatrix} p - i & \tau \\ \tau & (-p_{1}) \end{pmatrix} \begin{pmatrix} u_{x} \\ u_{y} \end{pmatrix}.$$
Denote $C = \begin{pmatrix} p - i & \tau \\ \tau & -(p+i) \end{pmatrix}$. We get $\begin{pmatrix} -v_{y} \\ v_{x} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ -\tau & p + i \end{pmatrix} \begin{pmatrix} p - i & \tau \\ v_{x} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ -\tau & p + i \end{pmatrix} \begin{pmatrix} p - i & \tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} -v_{y} \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ \tau & -(p+i) \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y} \end{pmatrix} = \frac{1}{(-p^{2} - \tau^{2})} \begin{pmatrix} 1 - p & -\tau \\ v_{y$$$

Area distortion under guasi-conformal map
To simplify our discussion, let
$$f: [0,1] \times [0,1] \rightarrow \Omega \subseteq \mathbb{C}$$
.
(i. Area of source domain R is 1) R
Now, area of $\Omega = \int_R J(z) dz$
 $Recall that \begin{pmatrix} +Vy \\ -Vx \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \beta & \beta \end{pmatrix} \begin{pmatrix} u_x \\ u_y \end{pmatrix} = \begin{pmatrix} \alpha u_x + \beta u_y \\ \mu u_x + \gamma u_y \end{pmatrix}$
i. Area of $\Omega = \int_R u_x (\alpha u_x + \beta u_y) + (\beta u_x + \gamma u_y) u_y$
 $= \int_R \alpha u_x^2 + 2\beta u_x u_y + \gamma u_y^2$
where d, β and γ are determined by $M = P + iT$.

Remark:
$$\mathcal{M}$$
 (or d, β, ϑ) introduces area distortion
Under f
• Computationally, once \mathcal{U} associated to \mathcal{M} is obtained
we can determine the area of the target domain by
 $A = \int_{R} d \mathcal{M}_{x}^{2} + 2\beta \mathcal{M}_{x} \mathcal{M}_{y} + \mathcal{M}_{y}^{2}$
If $\mathcal{L} = [0, 1] \times [0, h]$, then $h = A$.
: Once \mathcal{U} is computed, the geometry of the target
domain can be determined.
: \mathcal{V} can be computed (Useful observation!)