MATH3360: Mathematical Imaging

Assignment 2 Solutions

1. (a)
$$
\int_{\mathbb{R}} [H_0(t)]^2 dt = \int_0^1 dt = 1.
$$

For any $p \in \mathbb{N} \cup \{0\}$ and $n \in \mathbb{Z} \cap [0, 2^p - 1]$,

$$
\int_{\mathbb{R}} [H_{2^p+n}(t)]^2 dt = \int_{\frac{n}{2^p}}^{\frac{n+0.5}{2^p}} (2^{\frac{p}{2}})^2 dt + \int_{\frac{n+0.5}{2^p}}^{\frac{n+1}{2^p}} (-2^{\frac{p}{2}})^2 dt
$$

$$
= 2 \cdot \frac{1}{2^{p+1}} \cdot 2^p = 1.
$$

(b) i. Let $m \in \mathbb{N} \setminus \{0\}$. There exists $p \in \mathbb{N} \cup \{0\}$ and $n \in \mathbb{Z} \cap [0, 2^p - 1]$ such that $m = 2^p + n$. Then

$$
\langle H_0, H_m \rangle = \int_{\mathbb{R}} H_0(t) H_{2^p+n}(t) dt
$$

=
$$
\int_{\frac{n}{2^p}}^{\frac{n+0.5}{2^p}} 2^{\frac{p}{2}} dt + \int_{\frac{n+0.5}{2^p}}^{\frac{n+1}{2^p}} (-2^{\frac{p}{2}}) dt
$$

=
$$
\frac{1}{2^{p+1}} \cdot 2^{\frac{p}{2}} + \frac{1}{2^{p+1}} \cdot (-2^{\frac{p}{2}}) = 0.
$$

ii. A. Suppose $p_1 = p_2$. Then

$$
\langle H_{m_1}, H_{m_2} \rangle = \int_{\mathbb{R}} H_{2^{p_1} + n_1}(t) H_{2^{p_1} + n_2}(t) dt
$$

=
$$
\int_{\frac{n_1}{2^{p_1}}}^{\frac{n_1 + 0.5}{2^{p_1}}} 2^{\frac{p_1}{2}} \cdot 0 dt + \int_{\frac{n_1 + 0.5}{2^{p_1}}}^{\frac{n_1 + 1}{2^{p_1}}} (-2^{\frac{p_1}{2}}) \cdot 0 dt
$$

+
$$
\int_{\frac{n_2}{2^{p_1}}}^{\frac{n_2 + 0.5}{2^{p_1}}} 0 \cdot 2^{\frac{p_1}{2}} + \int_{\frac{n_2 + 0.5}{2^{p_1}}}^{\frac{n_2 + 1}{2^{p_1}}} 0 \cdot (-2^{\frac{p_1}{2}}) dt = 0.
$$

- B. Suppose $p_1 < p_2$. Then either
	- $2^{p_2-p_1}n_1 \leq n_2 < 2^{p_2-p_1}(n_1+0.5)$ and thus $\left\lceil \frac{n_2}{2^{p_1}} \right\rceil$ $\frac{n_2}{2^{p_2}}, \frac{n_2+1}{2^{p_2}}$ 2^{p_2} $\Big\} \subseteq \Big[\frac{n_1}{2n_1}\Big]$ $\frac{n_1}{2^{p_1}}, \frac{n_1+0.5}{2^{p_1}}$ 2^{p_1} $\Big)$; or • $2^{p_2-p_1}(n_1+0.5) \leq n_2 < 2^{p_2-p_1}(n_1+1)$ and thus $\left\lceil \frac{n_2}{2^{p_2}} \right\rceil$ $\frac{n_2}{2^{p_2}}, \frac{n_2+1}{2^{p_2}}$ 2 p2 $\Big) \subseteq \Big[\frac{n_1 + 0.5}{2n_1}\Big]$ $\frac{+0.5}{2^{p_1}}, \frac{n_1+1}{2^{p_1}}$ 2^{p_1} $\bigg)$; or \lceil $n₂$ $n_2 + 1$, $\left\lceil n_1 + 0.5 \right\rceil n_1 + 1$

•
$$
\left(\frac{n_2}{2^{p_2}}, \frac{n_2+1}{2^{p_2}}\right) \cap \left(\frac{n_1+0.5}{2^{p_1}}, \frac{n_1+1}{2^{p_1}}\right) = \varnothing
$$
.

In any case, H_{m_1} is constant on $\left[\frac{n_2}{2^{p_2}}, \frac{n_2+1}{2^{p_2}}\right]$ $\frac{2^{n+2}}{2^{p_2}}$, and thus denoting the constant by c,

$$
\langle H_{m_1}, H_{m_2} \rangle = \int_{\mathbb{R}} H_{2^{p_1}+n_1}(t) H_{2^{p_2}+n_2}(t) dt
$$

= $c \int_{\frac{n_2}{2^{p_2}}}^{\frac{n_2+0.5}{2^{p_2}}} 2^{\frac{p_2}{2}} dt + c \int_{\frac{n_2+0.5}{2^{p_2}}}^{\frac{n_2+1}{2^{p_2}}} (-2^{\frac{p_2}{2}}) dt$
= $c \left[\frac{1}{2^{p_2+1}} \cdot 2^{\frac{p_2}{2}} + \frac{1}{2^{p_2+1}} \cdot (-2^{\frac{p_2}{2}}) \right] = 0.$

2. (a) Note that $W_0 = \mathbf{1}_{[0,1)}$ and thus $(W_0)^2 = \mathbf{1}_{[0,1)}$. Recall that for any $n \in \mathbb{N} \cup \{0\}$, W_n is defined by the recursive relation:

$$
W_{2j+q}(t) = (-1)^{\lfloor \frac{j}{2} \rfloor + q} W_j(2t) + (-1)^{j + \lfloor \frac{j}{2} \rfloor} W_j(2t - 1)
$$

for $j \in \mathbb{N} \cup \{0\}$ and $q \in \{0, 1\}$. Hence for any $n \in \mathbb{N}$, $(W_n)^2 \equiv \mathbf{1}_{[0,1)}$ and thus

$$
\int_{\mathbb{R}} [W_n(t)]^2 dt = \int_0^1 dt = 1.
$$

(b) i. Suppose $j_1 = j_2$. Then $m_1 = 2j_1$ and $m_2 = 2j_1 + 1$, and

$$
\langle W_{m_1}, W_{m_2} \rangle = \int_{\mathbb{R}} W_{2j_1}(t) W_{2j_1+1}(t) dt
$$

\n
$$
= \int_0^{\frac{1}{2}} (-1)^{\lfloor \frac{j_1}{2} \rfloor} W_{j_1}(2t) \cdot (-1)^{\lfloor \frac{j_1}{2} \rfloor + 1} W_{j_1}(2t) dt
$$

\n
$$
+ \int_{\frac{1}{2}}^1 (-1)^{j_1 + \lfloor \frac{j_1}{2} \rfloor} W_{j_1}(2t - 1) \cdot (-1)^{j_1 + \lfloor \frac{j_1}{2} \rfloor} W_{j_1}(2t - 1) dt
$$

\n
$$
= - \int_0^1 [W_{j_1}(u)]^2 d(\frac{u}{2}) + \int_0^1 [W_{j_1}(v)]^2 d(\frac{v - 1}{2})
$$

\n
$$
= -\frac{1}{2} ||W_{j_1}||^2 + \frac{1}{2} ||W_{j_1}||^2 = 0.
$$

ii. Suppose $j_1 < j_2$. Then

$$
\langle W_{m_1}, W_{m_2} \rangle = \int_{\mathbb{R}} W_{2j_1 + q_1}(t) W_{2j_2 + q_2}(t) dt
$$

\n
$$
= \int_0^{\frac{1}{2}} (-1)^{\lfloor \frac{j_1}{2} \rfloor + q_1} W_{j_1}(2t) \cdot (-1)^{\lfloor \frac{j}{2} \rfloor + q_2} W_{j_2}(2t) dt
$$

\n
$$
+ \int_{\frac{1}{2}}^1 (-1)^{j_1 + \lfloor \frac{j_1}{2} \rfloor} W_{j_1}(2t - 1) \cdot (-1)^{j_2 + \lfloor \frac{j_2}{2} \rfloor} W_{j_2}(2t - 1) dt
$$

\n
$$
= (-1)^{\lfloor \frac{j_1}{2} \rfloor + \lfloor \frac{j_2}{2} \rfloor + q_1 + q_2} \cdot \frac{1}{2} \int_0^1 W_{j_1}(u) W_{j_2}(u) du
$$

\n
$$
+ (-1)^{j_1 + j_2 + \lfloor \frac{j_1}{2} \rfloor + \lfloor \frac{j_2}{2} \rfloor} \cdot \frac{1}{2} \int_0^1 W_{j_1}(v) W_{j_2}(v) dv
$$

\n
$$
= \left[(-1)^{\lfloor \frac{j_1}{2} \rfloor + \lfloor \frac{j_2}{2} \rfloor + q_1 + q_2} + (-1)^{j_1 + j_2 + \lfloor \frac{j_1}{2} \rfloor + \lfloor \frac{j_2}{2} \rfloor} \right] \langle W_{j_1}, W_{j_2} \rangle = 0
$$

by the induction hypothesis.

Remark. Recall that $P(m)$ states that

 $\{W_0, \ldots, W_m\}$ is orthogonal in $(L^2(\mathbb{R}), \langle \cdot, \cdot \rangle)$.

Hence even if we have proven $P(m)$ to be true for any $m \in \mathbb{N} \cup \{0\},\$

W is orthogonal in $(L^2(\mathbb{R}), \langle \cdot, \cdot \rangle)$

has not been directly proven. The subtle difference is easier to observe if we consider the statements

$$
\tilde{P}(m) : \{0, \ldots, m\} \text{ is finite}
$$

 $\mathbb{N} \cup \{0\}$ is finite,

for which $\tilde{P}(m)$ being true for any $m \in \mathbb{N} \cup \{0\}$ does not imply the truthfulness of the second statement. However, since the orthogonality of W depends on the orthogonality of pairs of its elements, and each pair of its elements is contained in some $\{W_0 \ldots, W_m\}$, the induction result suffices.

3. (a) For 4×4 images, the transform matrix

$$
U = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{pmatrix}
$$

So, $\hat{A} = UAU = \frac{1}{8} \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & -j & 1+j & -1 \\ 0 & 1+j & 2 & 1-j \\ 0 & -1 & 1-j & j \end{pmatrix}$
 $\hat{B} = UBU = \frac{1}{8} = \begin{pmatrix} 2 & -1-j & 0 & -1+j \\ -1-j & j & 0 & 1 \\ 0 & 0 & 0 & 0 \\ -1+j & 1 & 0 & -j \end{pmatrix}$

(b) After discarding 4 smallest entries of the DFT of A, we obtain

$$
\hat{A}_{tr} = \frac{1}{8} \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 1+j & 0 \\ 0 & 1+j & 2 & 1-j \\ 0 & 0 & 1-j & 0 \end{pmatrix}
$$

So, $A_{tr} = \text{Re}((4U^*)\hat{A}_{tr}(4U^*)) = \frac{1}{4} \begin{pmatrix} 5 & -1 & 3 & 1 \\ -1 & 5 & 1 & 3 \\ 3 & 1 & 1 & 3 \\ 1 & 3 & 3 & 1 \end{pmatrix}$.
(c) $A * B = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 1 & 2 & 3 \\ 2 & 2 & 2 & 2 \\ 2 & 3 & 2 & 1 \end{pmatrix}$, $\widehat{A * B} = U(A * B)U = \frac{1}{4} \begin{pmatrix} 8 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$

Direct computation shows that $\widehat{A \ast B}(p, q) = 16\hat{A}(p, q)\hat{B}(p, q)$.

4. (a) For any $0 \le p, q \le N - 1$,

$$
iDFT(DFT(f))(p,q) = \frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k,l)e^{2\pi j \frac{m(k-p)+n(l-q)}{N}}
$$

=
$$
\frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k,l) \left[\sum_{m=0}^{N-1} e^{2\pi j \frac{m(k-p)}{N}} \right] \left[\sum_{n=0}^{N-1} e^{2\pi j \frac{n(l-q)}{N}} \right]
$$

=
$$
\frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k,l) \cdot N \mathbf{1}_{N\mathbb{Z}}(k-p) \cdot N \mathbf{1}_{N\mathbb{Z}}(l-q)
$$

=
$$
\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k,l) \delta(k-p) \delta(l-q) = f(p,q).
$$

and

(b) The matrix U used to calculate the DFT of an $N \times N$ matrix is given by

$$
U = (U(x, \alpha))_{0 \le x, \alpha \le n}, \text{ where } U(x, \alpha) = \frac{1}{\sqrt{N}} e^{2\pi j \frac{\alpha x}{N}}.
$$

Denote by \vec{u}_{α} the column of U indexed by α . Then for any $0 \le \alpha \le N - 1$,

$$
\langle \vec{u}_{\alpha}, \vec{u}_{\alpha} \rangle = \sum_{x=0}^{N-1} U(x, \alpha) \overline{U(x, \alpha)}
$$

=
$$
\sum_{x=0}^{N-1} \frac{1}{\sqrt{N}} e^{2\pi j \frac{x\alpha}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2\pi j \frac{x\alpha}{N}}
$$

=
$$
N \cdot \frac{1}{N} = 1.
$$

On the other hand, for any $0 \leq \alpha_1, \alpha_2 \leq N_1$ such that $\alpha_1 \neq \alpha_2$,

$$
\langle \vec{u}_{\alpha_1}, \vec{u}_{\alpha_2} \rangle = \sum_{x=0}^{N-1} U(x, \alpha_1) \overline{U(x, \alpha_2)}
$$

=
$$
\sum_{x=0}^{N-1} \frac{1}{\sqrt{N}} e^{2\pi j \frac{x\alpha_1}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2\pi j \frac{x\alpha_2}{N}}
$$

=
$$
\frac{1}{N} \sum_{x=0}^{N-1} e^{2\pi j \frac{x(\alpha_1 - \alpha_2)}{N}}
$$

=
$$
\frac{1}{N} \cdot N \mathbf{1}_{N\mathbb{Z}}(\alpha_1 - \alpha_2) = 0.
$$

Hence U is unitary.

- (c) Note the the DFT under this new definition is N times the inverse DFT under the original definition. So, this problem reduce to the first question in Tutorial 4. Hence, we have the formula $\widehat{g * f}(p, q) = N\hat{g}(p, q)\hat{f}(p, q)$.
- (d) Let \tilde{g} be the shifted image. Suppose $\tilde{g}(k, l) = g(k k_0, l l_0)$. Then,

$$
\hat{g}(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \tilde{g}(k,l) e^{2\pi j \frac{mk+nl}{N}}
$$

\n
$$
= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k-k_0, l-l_0) e^{2\pi j \frac{mk+nl}{N}}
$$

\n
$$
= \frac{1}{N} \sum_{k'= -k_0}^{N-1-k_0} \sum_{l'=-l_0}^{N-1-l_0} g(k',l') e^{2\pi j \frac{mk'+nl'}{N}} e^{2\pi j \frac{mk_0+nl_0}{N}}
$$

\n
$$
= \hat{g}(m,n) e^{2\pi j \frac{mk_0+nl_0}{N}}
$$

(e) Coding Assignment:

Q1:

1 recon = $(h * U') * freq * (h * U')$;