2017-18 MATH1010 Lecture 7: Continuity Charles Li

Remark: the note is for reference only. It may contain typos. Read at your own risk.

1 Continuity

Definition 1 A function f is **continuous** at $x = c$ if all three of these conditions are satisfied:

- 1. $f(c)$ is defined.
- 2. $\lim_{x\to c} f(x)$ exists.
- 3. $\lim_{x \to c} f(x) = f(c)$.

If $f(x)$ is not continuous at $x = c$, it is said to have a **discontinuity** there.

Example 1 If $p(x)$ and $q(x)$ are polynomials, then

$$
\lim_{x \to c} p(x) = p(c)
$$

and

$$
\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)} \text{ if } q(c) \neq 0.
$$

So a polynomial or a rational function is continuous wherever it is defined (i.e. $q(c) \neq 0$).

Example 2 Show that $f(x) = x^3 - 1$ is continuous at $x = 1$. $f(1) = 0.$

$$
\lim_{x \to 1} f(x) = 1^3 - 1 = 0 = f(1)
$$

(i.e., limit exists and is equal to $f(1)$.)

Example 3 Show that $f(x) = \frac{x-1}{x+1}$ is continuous at $x = 2$. Answer First $f(2) = \frac{2-1}{2+1} = \frac{1}{3}$ $\frac{1}{3}$.

$$
\lim_{x \to 2} f(x) = \frac{\lim_{x \to 2} (x - 1)}{\lim_{x \to 2} (x + 1)} = \frac{1}{3}.
$$

Example 4 Discuss the continuity of $f(x) = \frac{1}{x}$. Answer $f(x)$ is defined everywhere except at $x = 0$, so it is continuous for all $x \neq 0$.

Example 5 Discuss the continuity of $f(x) = \frac{x^2-1}{x+1}$. Answer $f(x)$ is defined everywhere except at $x = -1$, so it is continuous for all $x \neq -1$.

Example 6 Discuss the continuity of

$$
f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & \text{if } x \neq -1, \\ -2 & \text{if } x = -1. \end{cases}
$$

Answer: From the previous example, we already know that $f(x)$ is continuous at $x \neq -1$. For $c = -1$, $f(c) = -2$. Also for $x \neq -1$, $\frac{x^2-1}{x+1} = \frac{(x-1)(x+1)}{x+1} = x - 1$. Thus

$$
\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2 = f(c).
$$

So f is continuous at all x .

Example 7 Discuss the continuity of

$$
f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & \text{if } x \neq -1, \\ 0 & \text{if } x = -1. \end{cases}
$$

Answer: From the previous example, we already know that $f(x)$ is continuous at $x \neq -1$. For $c = -1$, $f(c) = 0$. Also

$$
\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2 \neq 0 = f(c).
$$

So f is not continuous at all $x = -1$ but continuous for all $x \neq -1$.

Example 8 For what value of A is the following function continuous for all x ?

$$
f(x) = \begin{cases} \frac{x^3 - 1}{x - 1} & \text{if } x \neq 1, \\ A & \text{if } x = 1. \end{cases}
$$

Answer: The function is a rational function. The denominator is non-zero except at $x = 1$. So the function is continuous at $x \neq 1$. For $x=1$

$$
\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1}
$$

$$
= \lim_{x \to 1} x^2 + x + 1 = 3.
$$

If we define $A = 3$, then $\lim_{x \to 1} f(x) = A = f(1)$.

Example 9 Discuss the continuity of the piecewise function:

$$
f(x) = \begin{cases} x+1 & \text{if } x \le 1, \\ 2x^2 & \text{if } x > 1. \end{cases}
$$

Answer: Since $x + 1$ and $2x^2$ are polynomials, the function is continuous except possibly at $x = 1$. For $x = 1$, $f(1) = 1 + 1 = 2$.

$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x + 1) = 1 + 1 = 2.
$$

$$
\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2x^{2} = 2 \cdot 1^{2} = 2.
$$

Answer Because the left hand limit and the right hand limit exist and equal. So $\lim_{x\to 1} = 2 = f(1)$. Therefore $f(x)$ is continuous at all x.

Example 10 For what value of A such that the following function continuous at all x ?

$$
f(x) = \begin{cases} x^2 + x - 1 & \text{if } x \le 0, \\ x + A & \text{if } x > 0. \end{cases}
$$

Because $x^2 + x - 1$ and $x + A$ are polynomials, they are continuous everywhere except possibly at $x = 0$. Also $f(0) = 0^2 + 0 - 1 = -1$.

$$
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x^2 + x - 1) = -1
$$

and

$$
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + A) = A.
$$

For $\lim_{x\to 0} f(x)$ to exist, the left hand limit and the right hand limit must be equal. So we must have $A = -1$. In which case

$$
\lim_{x \to 0} f(x) = -1 = f(0).
$$

This means that $f(x)$ is continuous for all x only when $A = -1$.

Proposition 2 Suppose $f(x)$ and $g(x)$ are continuous at $x = c$.

1. $f(x) + g(x)$, $f(x) - g(x)$, $f(x)g(x)$ are continuous at $x = c$. 2. If $g(c) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at $x = c$.

Proposition 3 $f(x)$ is continuous at $x = c$ if and only if

$$
\lim_{h \to 0} f(c+h) = f(c).
$$

Proof. Let $h = x - c$. Then $h \to 0$ as $x \to c$.

$$
\lim_{x \to c} f(x) = \lim_{h \to 0} f(c+h).
$$

 \Box

Proposition 4 sin x, cos x are continuous function on \mathbf{R} .

Proof. By the addition formula,

$$
\sin(c+h) = \sin c \cos h + \cos c \sin h.
$$

So

$$
\lim_{x \to c} \sin x = \lim_{h \to 0} \sin(c + h)
$$

$$
= \lim_{h \to 0} (\sin c \cos h + \cos c \sin h)
$$

$$
= (\sin c) \lim_{h \to 0} \cos h + (\cos c) \lim_{h \to 0} \sin h
$$

$$
= (\sin c) \times 1 + (\cos c) \times 0 = \sin c.
$$

Therefore sin is a continuous function. The case for cos is left as an exercise.

Proposition 5 tan x is a continuous function except at $x = (n + \frac{1}{2})$ $\frac{1}{2}$) π for some integer n.

Proof. tan $x = \frac{\sin x}{\cos x}$ $\frac{\sin x}{\cos x}$. By proposition 2, $\frac{\sin x}{\cos x}$ is a continuous function except at $\cos x = 0$, i.e. $x = (n + \frac{1}{2})$ $\frac{1}{2}$) π for some integer n . \Box

Proposition 6 Let f and g be functions, if g is continuous at $x = c$ and f is continuous at $x = g(c)$. Then $f(g(x))$ is continuous at $x = c$. In fact $\lim_{x \to c} f(g(x)) = f(g(c))$.

Corollary 7 If $f(x)$ is a continuous function at $x = c$, then f^n and $f^{\prime\prime}$ are continuous at $x = c$. Here n is a positive integer $\sqrt[m]{f}$ are continuous at $x = c$. Here n is a positive integer.

Example 11 Show that $\sqrt[3]{x^3 + 1}$ is a continuous function. **EXAMPLE 11** SHOW that $\sqrt{x^3 + 1}$ is a continuous function.
Answer Let $g(x) = x^3 + 1$ and $f(x) = \sqrt[3]{x}$. Then the composite **Answer** Let $g(x) = x^3 + 1$ and $f(x) = \sqrt{x^2}$. Then the compositunction $f(g(x)) = f(x^3 + 1) = \sqrt[3]{x^3 + 1}$ is a continuous function.

Example 12. Show that $\left|\frac{x+1}{x-1}\right|$ is a continuous function on $\mathbf{R}\setminus\{1\}$. Answer Let $g(x) = \frac{x+1}{x-1}$ and $f(x) = |x|$. $g(x) = \frac{x+1}{x-1}$ is continuous everywhere except $x = 1$. $f(x) = |x|$ is a continuous function. Then the composite function $f(g(x)) = \left|\frac{x+1}{x-1}\right|$ is a continuous function on $\mathbf{R}\backslash\{1\}.$

Example 13 Discuss the continuity of $cos(sin(x^2))$. Answer x^2 is a continuous function, so $\sin(x^2)$ is a continuous function. Hence $cos(sin(x^2))$ is a continuous function.

Example 14 Discuss the continuity of the following functions

1.

$$
f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}
$$

2.

$$
g(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}
$$

Answer

1. For $c \neq 0$, $x \mapsto \frac{1}{x}$ is continuous at $x = c$, and $y \mapsto \sin y$ is continuous. Hence the composite $x \mapsto \sin \frac{1}{x}$ is continuous at $x \neq 0$ Let $a_n = \frac{1}{(n+\frac{1}{2})\pi}$, then $\lim_{n\to\infty} a_n = 0$. Next $f(a_n) = \sin((n+\frac{1}{2})\pi)$

1 $\frac{1}{2}$) $\pi = (-1)^n$, so $\lim_{n\to\infty} f(a_n)$ diverges. Therefore $\lim_{x\to 0} f(x)$ does not exist. So it is not continuous at $x = 0$.

2. For $c \neq 0$, $x \mapsto \frac{1}{x}$ is continuous at $x = c$, and $y \mapsto \sin y$ is continuous. Hence the composite $x \mapsto \sin \frac{1}{x}$ is continuous at $x \neq 0$. Therefore the product $x \mapsto x \sin \frac{1}{x}$ is continuous at $x \neq 0$.

For $c = 0$. Because

$$
-|x| \le x \sin \frac{1}{x} \le |x|,
$$

Because $\lim_{x\to 0}(-|x|) = \lim_{x\to 0}|x| = 0$, by the Sandwich theorem,

$$
\lim_{x \to 0} x \sin \frac{1}{x} = 0.
$$

Thus the function $g(x)$ is continuous.

Example 15 Challenge question Again, I will buy you a drink if you are the first one to give a rigorous answer. Let f be a function on $(0, 1)$ defined by

$$
f(x) = \begin{cases} \frac{1}{q} & \text{if } x = p/q \text{ a reduced fraction,} \\ 0 & \text{otherwise.} \end{cases}
$$

Show that $f(x)$ is continuous at irrational x (i.e., number cannot be written as a fraction) and is discontinuous at rational x . This is so called the Dirichlet function.

2 Continuity on intervals

Definition 8 Let $f : (a, b) \rightarrow \mathbb{R}$ be a function. Then f is said to be continuous on (a, b) if it is continuous at every point on (a, b) .

Next, let's assume $f : [a, b] \rightarrow \mathbf{R}$ be a function. What's the meaning of f being continuous at one of the end point a? $\lim_{x\to a} f(x)$ does not make sense because f is not defined on $x < a$. So to define the continuity at $x = a$, we only concern about the value $x > a$. Similarly, to discuss about the continuity at $x = b$, we only concern about the value $x < b$.

Definition 9 Let $f : [a, b] \to \mathbf{R}$ be a function. Then f is said to be continuous at a if

$$
\lim_{x \to a^+} f(x) = f(a).
$$

f is said to be continuous at b if

$$
\lim_{x \to b^{-}} f(x) = f(b).
$$

Then f is said to be a continuous function on the interval $[a, b]$ if f is continuous on $a \leq x \leq b$.

Example 16 Discuss the continuity of the function $f : [0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x) = \begin{cases} \frac{x-1}{x} & \text{if } x \in (0,1], \\ 0 & \text{if } x = 0. \end{cases}
$$

Answer: $f(x)$ is continuous on $(0, 1)$. $f(x)$ is also continuous at $x = 1$ but $\lim_{x \to 0^+} f(x)$ does not exists. So f is not continuous at $x = 0$.

3 Intermediate Value Theorem

Theorem 10 (Intermediate Value Theorem or Intermediate value property) Suppose f is a continuous function on the interval $[a, b]$ and L is a number between $f(a)$ and $f(b)$. Then there exist a number c, between a and b, such that $f(c) = L$.

Example 17 Let $f(x) = x^5 - x + 1$. Show that the polynomial has a root between −2 and 0.

Recall a root of $f(x)$ is a solution of $f(x) = 0$.

Answer First of all, because f is a polynomial, f is a continuous function on $[-2, 0]$. Next $f(-2) = -29$, $f(0) = 1$. Let $L = 0$. It is between $f(-2)$ and $f(0)$. By the intermediate value theorem, there exists some number c between -2 and 0 such that $f(x) = L = 0$.

Remark Although we don't know how to find the root, we know a root exists.

Remark (can be skipped). Suppose $f(x)$ is a polynomial of odd degree. Write

$$
f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0
$$

where $a_n \neq 0$. Without loss of generality, we can assume a_n is positive. Because $\lim_{x \to +\infty} f(x) = +\infty$ and $\lim_{x \to -\infty} f(x) = -\infty$. There exist a (a very very negative) and b (a very very positive number) such that $f(a) < 0$ and $f(b) > 0$. Let $L = 0$. Then again, by the intermediate value theorem, there exists c between a and b such that $f(c) = 0$. So a root exists for $f(x)$.

This is a special case of fundamental theorem of algebra.

Proof may be discussed during class(can be skipped).