## 2017-18 MATH1010 Lecture 7: Continuity Charles Li

**Remark**: the note is for reference only. It may contain typos. Read at your own risk.

# 1 Continuity

**Definition 1** A function f is continuous at x = c if all three of these conditions are satisfied:

- 1. f(c) is defined.
- 2.  $\lim_{x \to c} f(x)$  exists. 2.  $\lim_{x \to c} f(x) = f(x)$
- 3.  $\lim_{x \to c} f(x) = f(c).$

If f(x) is not continuous at x = c, it is said to have a **discontinuity** there.

**Example 1** If p(x) and q(x) are polynomials, then

$$\lim_{x \to c} p(x) = p(c)$$

and

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)} \text{ if } q(c) \neq 0.$$

So a polynomial or a rational function is continuous wherever it is defined (i.e.  $q(c) \neq 0$ ).

**Example 2** Show that  $f(x) = x^3 - 1$  is continuous at x = 1. f(1) = 0.

$$\lim_{x \to 1} f(x) = 1^3 - 1 = 0 = f(1)$$

(i.e., limit exists and is equal to f(1).)

**Example 3** Show that  $f(x) = \frac{x-1}{x+1}$  is continuous at x = 2. Answer First  $f(2) = \frac{2-1}{2+1} = \frac{1}{3}$ .

$$\lim_{x \to 2} f(x) = \frac{\lim_{x \to 2} (x-1)}{\lim_{x \to 2} (x+1)} = \frac{1}{3}.$$

**Example 4** Discuss the continuity of  $f(x) = \frac{1}{x}$ . **Answer** f(x) is defined everywhere except at x = 0, so it is continuous for all  $x \neq 0$ .

**Example 5** Discuss the continuity of  $f(x) = \frac{x^2-1}{x+1}$ . **Answer** f(x) is defined everywhere except at x = -1, so it is continuous for all  $x \neq -1$ .

Example 6 Discuss the continuity of

$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & \text{if } x \neq -1, \\ -2 & \text{if } x = -1. \end{cases}$$

**Answer**: From the previous example, we already know that f(x) is continuous at  $x \neq -1$ . For c = -1, f(c) = -2. Also for  $x \neq -1$ ,  $\frac{x^2-1}{x+1} = \frac{(x-1)(x+1)}{x+1} = x - 1$ . Thus

$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2 = f(c).$$

So f is continuous at all x.

**Example 7** Discuss the continuity of

$$f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & \text{if } x \neq -1, \\ 0 & \text{if } x = -1. \end{cases}$$

**Answer**: From the previous example, we already know that f(x) is continuous at  $x \neq -1$ . For c = -1, f(c) = 0. Also

$$\lim_{x \to -1} \frac{x^2 - 1}{x + 1} = \lim_{x \to -1} (x - 1) = -2 \neq 0 = f(c).$$

So f is not continuous at all x = -1 but continuous for all  $x \neq -1$ .

**Example 8** For what value of A is the following function continuous for all x?

$$f(x) = \begin{cases} \frac{x^3 - 1}{x - 1} & \text{if } x \neq 1, \\ A & \text{if } x = 1. \end{cases}$$

Answer: The function is a rational function. The denominator is non-zero except at x = 1. So the function is continuous at  $x \neq 1$ . For x = 1

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1}$$

$$= \lim_{x \to 1} x^2 + x + 1 = 3.$$

If we define A = 3, then  $\lim_{x \to 1} f(x) = A = f(1)$ .

Example 9 Discuss the continuity of the piecewise function:

$$f(x) = \begin{cases} x+1 & \text{if } x \le 1, \\ 2x^2 & \text{if } x > 1. \end{cases}$$

**Answer**: Since x + 1 and  $2x^2$  are polynomials, the function is continuous except possibly at x = 1. For x = 1, f(1) = 1 + 1 = 2.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+1) = 1+1 = 2$$
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2x^{2} = 2 \cdot 1^{2} = 2.$$

Answer Because the left hand limit and the right hand limit exist and equal. So  $\lim_{x\to 1} 2 = f(1)$ . Therefore f(x) is continuous at all x.

**Example 10** For what value of A such that the following function continuous at all x?

$$f(x) = \begin{cases} x^2 + x - 1 & \text{if } x \le 0, \\ x + A & \text{if } x > 0. \end{cases}$$

Because  $x^2 + x - 1$  and x + A are polynomials, they are continuous everywhere except possibly at x = 0. Also  $f(0) = 0^2 + 0 - 1 = -1$ .

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x^{2} + x - 1) = -1$$

and

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x + A) = A$$

For  $\lim_{x\to 0} f(x)$  to exist, the left hand limit and the right hand limit must be equal. So we must have A = -1. In which case

$$\lim_{x \to 0} f(x) = -1 = f(0).$$

This means that f(x) is continuous for all x only when A = -1.

**Proposition 2** Suppose f(x) and g(x) are continuous at x = c.

1. f(x) + g(x), f(x) - g(x), f(x)g(x) are continuous at x = c. 2. If  $g(c) \neq 0$ , then  $\frac{f(x)}{g(x)}$  is continuous at x = c.

**Proposition 3** f(x) is continuous at x = c if and only if

$$\lim_{h \to 0} f(c+h) = f(c).$$

*Proof.* Let h = x - c. Then  $h \to 0$  as  $x \to c$ .

$$\lim_{x \to c} f(x) = \lim_{h \to 0} f(c+h).$$

**Proposition 4**  $\sin x$ ,  $\cos x$  are continuous function on **R**.

*Proof.* By the addition formula,

$$\sin(c+h) = \sin c \cos h + \cos c \sin h.$$

 $\operatorname{So}$ 

$$\lim_{x \to c} \sin x = \lim_{h \to 0} \sin(c+h)$$
$$= \lim_{h \to 0} (\sin c \cos h + \cos c \sin h)$$
$$= (\sin c) \lim_{h \to 0} \cos h + (\cos c) \lim_{h \to 0} \sin h$$
$$= (\sin c) \times 1 + (\cos c) \times 0 = \sin c.$$

Therefore sin is a continuous function. The case for  $\cos$  is left as an exercise.

**Proposition 5** tan x is a continuous function except at  $x = (n + \frac{1}{2})\pi$  for some integer n.

*Proof.*  $\tan x = \frac{\sin x}{\cos x}$ . By proposition 2,  $\frac{\sin x}{\cos x}$  is a continuous function except at  $\cos x = 0$ , i.e.  $x = (n + \frac{1}{2})\pi$  for some integer n.

**Proposition 6** Let f and g be functions, if g is continuous at x = cand f is continuous at x = g(c). Then f(g(x)) is continuous at x = c. In fact  $\lim_{x\to c} f(g(x)) = f(g(c))$ . **Corollary 7** If f(x) is a continuous function at x = c, then  $f^n$  and  $\sqrt[n]{f}$  are continuous at x = c. Here n is a positive integer.

**Example 11** Show that  $\sqrt[3]{x^3+1}$  is a continuous function. **Answer** Let  $g(x) = x^3 + 1$  and  $f(x) = \sqrt[3]{x}$ . Then the composite function  $f(g(x)) = f(x^3+1) = \sqrt[3]{x^3+1}$  is a continuous function.

**Example 12**. Show that  $\left|\frac{x+1}{x-1}\right|$  is a continuous function on  $\mathbb{R}\setminus\{1\}$ . **Answer** Let  $g(x) = \frac{x+1}{x-1}$  and f(x) = |x|.  $g(x) = \frac{x+1}{x-1}$  is continuous everywhere except x = 1. f(x) = |x| is a continuous function. Then the composite function  $f(g(x)) = \left|\frac{x+1}{x-1}\right|$  is a continuous function on  $\mathbb{R}\setminus\{1\}$ .

**Example 13** Discuss the continuity of  $cos(sin(x^2))$ . **Answer**  $x^2$  is a continuous function, so  $sin(x^2)$  is a continuous function. Hence  $cos(sin(x^2))$  is a continuous function.

**Example 14** Discuss the continuity of the following functions

1.

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

2.

$$g(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

#### Answer

1. For  $c \neq 0$ ,  $x \mapsto \frac{1}{x}$  is continuous at x = c, and  $y \mapsto \sin y$  is continuous. Hence the composite  $x \mapsto \sin \frac{1}{x}$  is continuous at  $x \neq 0$ 

Let  $a_n = \frac{1}{(n+\frac{1}{2})\pi}$ , then  $\lim_{n\to\infty} a_n = 0$ . Next  $f(a_n) = \sin(n + \frac{1}{2})\pi = (-1)^n$ , so  $\lim_{n\to\infty} f(a_n)$  diverges. Therefore  $\lim_{x\to 0} f(x)$  does not exist. So it is not continuous at x = 0.

2. For  $c \neq 0$ ,  $x \mapsto \frac{1}{x}$  is continuous at x = c, and  $y \mapsto \sin y$  is continuous. Hence the composite  $x \mapsto \sin \frac{1}{x}$  is continuous at  $x \neq 0$ . Therefore the product  $x \mapsto x \sin \frac{1}{x}$  is continuous at  $x \neq 0$ .

For c = 0. Because

$$-|x| \le x \sin \frac{1}{x} \le |x|,$$

Because  $\lim_{x\to 0} (-|x|) = \lim_{x\to 0} |x| = 0$ , by the Sandwich theorem,

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

Thus the function g(x) is continuous.

**Example 15 Challenge question** Again, I will buy you a drink if you are the first one to give a rigorous answer. Let f be a function on (0, 1) defined by

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = p/q \text{ a reduced fraction,} \\ 0 & \text{otherwise.} \end{cases}$$

Show that f(x) is continuous at irrational x (i.e., number cannot be written as a fraction) and is discontinuous at rational x. This is so called the **Dirichlet function**.

# 2 Continuity on intervals

**Definition 8** Let  $f : (a, b) \to \mathbf{R}$  be a function. Then f is said to be continuous on (a, b) if it is continuous at every point on (a, b).

Next, let's assume  $f : [a,b] \to \mathbf{R}$  be a function. What's the meaning of f being continuous at one of the end point a?  $\lim_{x \to a} f(x)$  does not make sense because f is not defined on x < a. So to define the continuity at x = a, we only concern about the value x > a. Similarly, to discuss about the continuity at x = b, we only concern about the value x < b.

**Definition 9** Let  $f : [a,b] \to \mathbf{R}$  be a function. Then f is said to be continuous at a if

$$\lim_{x \to a^+} f(x) = f(a).$$

f is said to be continuous at b if

$$\lim_{x \to b^-} f(x) = f(b).$$

Then f is said to be a continuous function on the interval [a, b] if f is continuous on  $a \le x \le b$ .

**Example 16** Discuss the continuity of the function  $f : [0,1] \to \mathbf{R}$  defined by

$$f(x) = \begin{cases} \frac{x-1}{x} & \text{if } x \in (0,1], \\ 0 & \text{if } x = 0. \end{cases}$$

**Answer**: f(x) is continuous on (0, 1). f(x) is also continuous at x = 1 but  $\lim_{x \to 0^+} f(x)$  does not exists. So f is not continuous at x = 0.

## 3 Intermediate Value Theorem

**Theorem 10 (Intermediate Value Theorem or Intermediate value property)** Suppose f is a continuous function on the interval [a, b] and L is a number between f(a) and f(b). Then there exist a number c, between a and b, such that f(c) = L.



**Example 17** Let  $f(x) = x^5 - x + 1$ . Show that the polynomial has a root between -2 and 0.

**Recall** a root of f(x) is a solution of f(x) = 0.

**Answer** First of all, because f is a polynomial, f is a continuous function on [-2, 0]. Next f(-2) = -29, f(0) = 1. Let L = 0. It is

between f(-2) and f(0). By the intermediate value theorem, there exists some number c between -2 and 0 such that f(x) = L = 0.

**Remark** Although we don't know how to find the root, we know a root exists.

**Remark** (can be skipped). Suppose f(x) is a polynomial of odd degree. Write

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

where  $a_n \neq 0$ . Without loss of generality, we can assume  $a_n$  is positive. Because  $\lim_{x \to +\infty} f(x) = +\infty$  and  $\lim_{x \to -\infty} f(x) = -\infty$ . There exist a (a very very negative) and b (a very very positive number) such that f(a) < 0 and f(b) > 0. Let L = 0. Then again, by the intermediate value theorem, there exists c between a and b such that f(c) = 0. So a root exists for f(x).

This is a special case of **fundamental theorem of algebra**.

Proof may be discussed during class(can be skipped).