2018 MATH1010F Lecture 6: The constant e Charles Li

The lecture note was used during 2016-17 Term 1. It is for reference only. It may contain typos. Read at your own risk.

1 Motivation

(Source: wikipedia)

Jacob Bernoulli discovered the constant e by studying a question about compound interest.

An account starts with \$1.00 and pays 100 percent interest per year. If the interest is credited once, at the end of the year, the value of the account at year-end will be \$2.00. What happens if the interest is computed and credited more frequently during the year?

If the interest is credited twice in the year, the interest rate for each 6 months will be 50% , so the initial \$1 is multiplied by 1.5 twice, yielding $$1.00 \times 1.5^2 = 2.25 at the end of the year. Credit four times Compounding quarterly quarterly yields

$$
$1.00 \times (1 + 25\%)^4 = $2.4414...
$$

Credit 12 times Compounding monthly yields

$$
$1.00(1+\frac{1}{12})^{12} = $2.613035...
$$

Credit x times If there are x compounding intervals, the interest for each interval will be $\frac{100}{x}\%$ and the value at the end of the year will be

$$
\$1.00(1+\frac{1}{x})^x.
$$

The effect of earning 20% annual interest on an initial \$1,000 investment at various compounding frequencies

\sim w				⊥∪	100	1000	0000
α I \sim	↵	つに	48832	2.5937 Ζ4	.70481	602 ◡◡	∸

 $\frac{(1 + x)^{n+2} + 2.25}{n+1}$ = $\frac{2.35674}{n+1}$ = $\frac{2.765674}{n+1}$ = $\frac{2$ proaches a limit. The limit is about 2.7182818... and is denoted by

$$
e = \lim_{x \to \infty} (1 + \frac{1}{x})^x = 2.7182818...
$$

2 Limit involving e

Example 1 Find $\lim_{x \to +\infty} (1 + \frac{2}{x})$ \boldsymbol{x} $)^x$.

$$
\lim_{x \to +\infty} (1 + \frac{2}{x})^x = \lim_{x \to +\infty} [(1 + \frac{1}{x/2})^{x/2}]^2.
$$

Let $y = x/2$, as $x \to +\infty$, $y \to +\infty$. The above is

$$
= \left(\lim_{x \to +\infty} (1 + \frac{1}{y})^y\right)^2 = e^2.
$$

Example 2 Find $\lim_{x \to +\infty} (1 + \frac{1}{2x})$ $2x - 1$ $)^x$.

$$
\lim_{x \to +\infty} (1 + \frac{1}{2x - 1})^x = \lim_{x \to +\infty} (1 + \frac{1}{2x - 1})^{\frac{1}{2}(2x - 1) + \frac{1}{2}}
$$

$$
= \lim_{x \to +\infty} [(1 + \frac{1}{2x - 1})^{2x - 1}]^{1/2} (1 + \frac{1}{2x - 1})^{1/2}.
$$

Let $y = 2x - 1$, as $x \to +\infty$, $y \to +\infty$.

$$
= \left[\lim_{x \to +\infty} (1 + \frac{1}{y})^y\right]^{1/2} \lim_{x \to +\infty} (1 + \frac{1}{2x - 1})^{1/2}
$$

$$
= e^{1/2} \cdot 1 = e^{1/2}.
$$

Example 3 Find $\lim_{x \to -\infty} (1 + \frac{1}{x})$ \boldsymbol{x} $)^x$. Let $y = -x$, as $x \to -\infty$, $y \to +\infty$.

$$
\lim_{x \to -\infty} (1 + \frac{1}{x})^x = \lim_{y \to +\infty} (1 - \frac{1}{y})^{-y}
$$

$$
= \lim_{y \to +\infty} \left(\frac{y}{y-1}\right)^y
$$

$$
= \lim_{y \to +\infty} (1 + \frac{1}{y-1})^{y-1} (1 + \frac{1}{y-1})
$$

$$
= e \cdot 1 = e.
$$

Remark: From the above, we know that

$$
\lim_{x \to \infty} (1 + \frac{1}{x})^x = e.
$$

Example 4 Find $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$. Let $y=\frac{1}{x}$ $\frac{1}{x}$, as $x \to 0$, $y \to \infty$. (As $x \to 0^+$, $y \to +\infty$. As $x \to 0^-$, $y \rightarrow -\infty.$

$$
\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{y \to \infty} (1+\frac{1}{y})^y = e.
$$

3 Properties of e

Recall $0! = 1, 1! = 1, 2! = 1 \times 2, 3! = 1 \times 2 \times 3, 4! = 1 \times 2 \times 3 \times 4, ...$ Generally for a non-negative integer n , the factorial of n is defined as

$$
n! = 1 \times 2 \times \cdots \times n.
$$

We define

$$
\exp(x) = \frac{x^0}{0!} + \frac{x^1}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
$$
 (1)

Such expression is called the **power series** of the function $exp(x)$.

Example 5

$$
\exp(1) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots
$$

Let count the first 10 terms

$$
\sum_{n=0}^{9} \frac{1}{n!} = \frac{98641}{36288} \approx 2.718281525573192 \approx e
$$

By the above observation we have

Proposition 1

$$
e = \exp(1) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots
$$

Proof. proof skipped. □

Proposition 2 Suppose x, y are real numbers, then

$$
\exp(x + y) = \exp(x)\exp(y).
$$

Proof. The proof can be skipped

$$
\exp(x)\exp(y) = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} \right) \left(\sum_{m=0}^{\infty} \frac{x^n}{m!} \right)
$$

=
$$
\sum_{n,m} \frac{x^n y^m}{n! m!}
$$

=
$$
\sum_{k=0}^{\infty} \sum_{n+m=k} \frac{x^n y^m}{n! m!}
$$

=
$$
\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{n+m=k} \frac{k!}{n! m!} x^n y^m
$$

=
$$
\sum_{k=0}^{\infty} \frac{(x+y)^k}{k!} = \exp(x+y).
$$

Here we use the binomial theorem

$$
(x+y)^k = \sum_{n+m=k} \frac{k!}{n!m!} x^n y^m.
$$

Corollary 3 For real numbers x_1, \ldots, x_n ,

$$
\exp(x_1 + x_2 + \cdots + x_n) = \exp(x_1) \exp(x_2) \cdots \exp(x_n).
$$

Corollary 4 For any positive integer n.

$$
\exp(nx) = (\exp(x))^n
$$

Proof. Let $x_1 = x_2 = \cdots = x_n = x$.

Corollary 5 For positive integer n ,

$$
e^n = \exp(n).
$$

Proof. Let $x = 1$ in the previous proposition with the fact that $\exp(1) = e$.

 \Box

Corollary 6 Let $x = p/q$ be a fraction. Then

 $\exp(x) = e^x$.

Proof.

$$
\exp(p/q)^q = \exp(p) = e^p.
$$

Hence

$$
\exp(p/q) = e^{p/q}.
$$

 \Box

From the above, we see that $exp(x)$ is a natural extension of the function e^x . We can define

$$
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \frac{1}{0!} + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dotsb \tag{2}
$$

From (2) , we can see that e^x grow faster than any polynomials. We have

Proposition 7 For any k,

$$
\lim_{x \to +\infty} x^k e^{-x} = \lim_{x \to +\infty} \frac{x^k}{e^x} = 0.
$$

Proposition 8

$$
\lim_{x \to +\infty} p(x)e^{-x} = \lim_{x \to +\infty} \frac{p(x)}{e^x} = 0.
$$

Example 6 Find

$$
\lim_{x \to +\infty} \frac{e^x - x}{2e^x + 5}.
$$

Answer:

$$
\lim_{x \to +\infty} \frac{e^x - x}{2e^x + 5} = \lim_{x \to +\infty} \frac{e^{-x}(e^x - x)}{e^{-x}(2e^x + 5)}
$$

$$
= \lim_{x \to +\infty} \frac{1 - xe^{-x}}{2 + 5e^{-x}} = \frac{\lim_{x \to +\infty} (1 - xe^{-x})}{\lim_{x \to +\infty} (2 + 5e^{-x})} = \frac{1}{2}.
$$

Example 7 Find

$$
\lim_{x \to 0^+} \frac{1}{x} e^{-1/x}
$$

.

Answer: Let $y = 1/x$, then

$$
\frac{1}{x}e^{-1/x} = ye^{-y}.
$$

$$
\lim_{x \to 0^+} \frac{1}{x}e^{-1/x} = \lim_{y \to +\infty} ye^{-y} = 0.
$$

4 Power Series of sin and cos

Can be skipped. Recall

$$
e^{ix} = \cos x + i \sin x.
$$

By (2), the left hand side is

$$
e^{ix} = \frac{1}{0!} + \frac{ix}{1!} + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots
$$

$$
= \frac{1}{0!} + \frac{ix}{1!} - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} + \cdots + \cdots
$$

$$
= \left(\frac{1}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\right) + i\left(\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right).
$$

Comparing the real part and the imaginary part, we have

$$
\cos x = \frac{1}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots
$$

and

$$
\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots
$$